Displaying 10 of 289 results for "Sjoukje A Osinga" clear search
Jorge is a PhD candidate of System Design Engineering at the University of Waterloo. His research activities are focused on applying agent-based models on three major areas: 1) financial markets to study the self-regulation capability of artificial markets with interacting investors and credit rating agencies; 2) the efficiency of road networks when users have access to real-time information and are able to adjust their behavior to current conditions; 3) failure probability of nuclear waste containers due to microbial- and chemical-driven corrosion.
IRPact - An integrated agent based modeling approach in innovation diffusion
Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.
I’ve been building cyberinfrastructure and research software for computational social science and the study of complex adaptive systems at Arizona State University since 2006. Past and current projects include the Digital Archaeological Record, the Virtual Commons, the Social Ecological Systems Library, Synthesizing Knowledge of Past Environments (SKOPE), the Port of Mars, and CoMSES Net, where I serve as co-director and technical lead.
I also work to improve the state of open, transparent, reusable, and reproducible computational science as a Carpentries instructor and maintainer for the Plotting and Programming in Python and Good Enough Practices for Scientific Computing lessons, currently co-chair the Consortium of Scientific Software Registries and Repositories and Open Modeling Foundation Cyberinfrastructure Working Group, and serve on the DataCite Services and Technology Steering Group and CSDMS’s Basic Model Interface open source governance council.
My research interests include collective action, social ecological systems, large-scale software systems engineering, model componentization and coupling, and finding effective ways to promote and facilitate good software engineering practices for reusable, reproducible, and interoperable scientific computation.
modeling infection system using agent-based modeling
The main research area is operation research in logistics with a focus on logistic cluster development and innovative technology usage. Due to mathematical background, Gružauskas focuses on quantitative analysis by conducting simulations, stochastic and dynamic models and other analytical approaches to amplify the developed theories. Gružauskas also is working as a freelance data analyst with a focus on statistical analysis, web scraping and machine learning.
Fabian Adelt graduated in computer-sciences with a minor in sociology of technology (degree: Diplom-Informatiker) at TU Dortmund University in 2011. Currently, he is research fellow at the Technology Studies Group and involved in the project “Collaborative Data- and Risk-Management in Future Grids – A Simulation Study” (KoRiSim). Between 2012 and 2015 he worked on the project “Mixed Modes of Governance as a Means of Risk Management in Complex Systems” (RiskSim). His research interests entail agent-based modelling and simulating of socio-technical systems, especially focussing on governance issues and actors’ reactions on interventions. Experience covers the fields of mobility and energy.
My research examines the most effective and efficient policies for renewable energy development using an approach that integrates input-output analysis, life cycle analysis, econometric, and agent-based modelling to estimate the impacts of the policies to economic, emission, extracted materials, renewable energy capacity and social acceptance.
Dr. Kimberly G. Rogers studies the coupled human-natural processes shaping coastal environments. She obtained a B.Sc. in Geological Sciences from the University of Texas at Austin and began her graduate studies on Long Island at Stony Brook University’s School of Marine and Atmospheric Sciences. Rogers completed her Ph.D. at Vanderbilt University, where she specialized in nearshore and coastal sediment transport. She was a postdoctoral scholar and research associate at the Institute for Arctic and Alpine Research at the University of Colorado Boulder. In 2014, her foundation in the physical sciences was augmented by training in Environmental Anthropology at Indiana University Bloomington through an NSF Science, Engineering, and Education for Sustainability (SEES) Fellowship.
Rogers’s research is broadly interdisciplinary and examines evolving sediment dynamics at the land-sea boundary, principally within the rapidly developing river deltas of South Asia. As deltas are some of the most densely populated coastal regions on earth, she incorporates social science methods to examine how institutions — particularly those governing land use and built infrastructure — influence the flow of water and sediment in coastal areas. She integrates quantitative and qualitative approaches in her work, such as direct measurement and geochemical fingerprinting of sediment transport phenomena, agent-based modeling, institutional and geospatial analyses, and ethnographic survey techniques. Risk holder collaboration is an integral part of her research philosophy and she is committed to co-production and capacity building in her projects. Her work has gained recognition from policy influencers such as the World Bank, USAID, and the US Embassy Bangladesh and has been featured in popular media outlets such as Slate and Environmental Health Perspectives.
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
Currently working on Agent Based Demography.
Displaying 10 of 289 results for "Sjoukje A Osinga" clear search