Displaying 2 of 2 results fit clear search
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
An ambitious and driven individual with knowledge and project experience in computer networks and security (BEng (Hons)), along with a masters degree at a top 10 UK university in the domain of IT, management and organizational change with a distinction, and is currently working as a Ph.D. Research fellow in Denmark.
Current Ph.D. Project - Work Improvisation, looking into more flexible and plastic management through cognition.
Organizational Cognition
Organizational behaviour
Organizational change
Gamification
Fit
Recruitment & Selection
Distribted Cognition