Displaying 4 of 4 results movement clear search
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
Biographical Sketch
(a) Professional Preparation
Brigham Young University Statistics & Computer Science B.S. 1986
University of North Carolina Chapel Hill Biostatistics M.S. 1988
North Carolina State University Biomathematics & Entomology Ph.D. 1997
(b) Appointments
Associate Professor 2006-current: Brigham Young University Department of Biology
Assistant Professor 2000-2006: Brigham Young University Department of Integrative Biology
Research Scientist 1997-1999: Agriculture Research Service-USDA Pacific Basin Agricultural Research Center.
(c) Publications
i. Five most relevant publications
Ahmadou H. Dicko, Renaud Lancelot, Momar Talla Seck, Laure Guerrini, Baba Sall, Mbargou Low, Marc J.B. Vreysen, Thierry Lefrançois, Fonta Williams, Steven L. Peck, and Jérémy Bouyer. 2014. Using species distribution models to optimize vector control: the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Science. 11 (28) : 10149-10154
Peck, S. L. 2014. Perspectives on why digital ecologies matter: Combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests. Acta Tropica. 138S (2014) S22–S25
Peck, S. L. and Jérémy Bouyer. 2012. Mathematical modeling, spatial complexity, and critical decisions in tsetse control. Journal of Economic Entomology 105(5): 1477—1486.
Peck, S. L. 2012. Networks of habitat patches in tsetse fly control: implications of metapopulation structure on assessing local extinction probabilities. Ecological Modelling 246: 99–102.
Peck, S. L. 2012. Agent-based models as fictive instantiations of ecological processes.” Philosophy & Theory in Biology. Vol. 4.e303 (2012): 12
ii. Five other publications of note
Peck, S. L. 2008. The Hermeneutics of Ecological Simulation. Biology and Philosophy 23:383-402.
K.M. Froerer, S.L. Peck, G.T. McQuate, R.I. Vargas, E.B. Jang, and D.O. McInnis. 2010. Long distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: How far can they go? American Entomologist 56(2): 88-94
Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for biological modeling. Trends in Ecology and Evolution 19 (10): 530 534
Storer N.P., S. L. Peck, F. Gould, J. W. Van Duyn and G. G. Kennedy. 2003 Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. Economic Entomology. 96(1): 173-187
Peck, S. L., F. Gould, and S. Ellner. 1999. The spread of resistance in spatially extended systems of transgenic cotton: Implications for the management of Heliothis virescens (Lepidoptera: Noctuidae). Economic Entomology 92:1-16.
I am Cheick Amed Diloma Gabriel Traoré, holding a PhD in Multi-Agent System Modeling from Cheikh Anta Diop University (UCAD), Senegal. My doctoral research focused on formalizing and simulating Sahelian transhumance as a complex adaptive system. Leveraging mathematical and computational techniques, I developed agent-based models to analyze the spatio-temporal dynamics of transhumant herds, considering factors such as herd behavior, environmental conditions, and socio-economic pressures.
My background includes a Master’s and Bachelor’s in Mathematics from the University of Nazi Boni, Burkina Faso, where I developed a rectangular mesh for image processing and applied the Hough transform to detect discrete lines. My studies at the University of Nazi Boni were funded by the Burkinabe government.
For my PhD, I conducted extensive fieldwork in Senegal, collaborating with interdisciplinary teams to gather data on transhumant practices. Using this data, I developed a multi-objective optimization framework to model herd movement decisions. Furthermore, I created a real-time monitoring system for transhumant herds based on discrete mathematics. My PhD research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).
Movement Ecology
Species Interactions
Ecological modelling