Displaying 4 of 4 results human-environment interactions clear search
I am interested in using agent based modelling and systematic data collection to understand diachronic human-environment interactions in the Maya region of Guatemala, Mexico, and Belize.
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
I received a PhD in Ecology from Duke University in 2006. I have been a faculty member in the Department of Biological Sciences at University of Illinois Chicago since 2008
urban ecology, socio-ecological systems, human-environment interactions, landscape ecology
Dr. Gravel-Miguel currently works as a Postdoctoral Research Scholar for the Institute of Human Origins at Arizona State University. She does research in Archaeology and focuses on the Upper Paleolithic of Southwest Europe. She currently works on projects ranging from cultural transmission to human-environment interactions in prehistory.
Archaeology, GIS, ABM, social networks, portable art, ornaments, data science