Community

Displaying 2 of 2 results complex adaptive system clear search

Cheick Amed Diloma Gabriel TRAORE Member since: Tue, Jan 25, 2022 at 10:57 AM Full Member

Ph.D., computer science, Cheikh Anta Diop University, Master of Science, Applied Mathematics, Nazi Boni University, Bachelor, Mathematics, Nazi Boni University

I am Cheick Amed Diloma Gabriel Traoré, holding a PhD in Multi-Agent System Modeling from Cheikh Anta Diop University (UCAD), Senegal. My doctoral research focused on formalizing and simulating Sahelian transhumance as a complex adaptive system. Leveraging mathematical and computational techniques, I developed agent-based models to analyze the spatio-temporal dynamics of transhumant herds, considering factors such as herd behavior, environmental conditions, and socio-economic pressures.

My background includes a Master’s and Bachelor’s in Mathematics from the University of Nazi Boni, Burkina Faso, where I developed a rectangular mesh for image processing and applied the Hough transform to detect discrete lines. My studies at the University of Nazi Boni were funded by the Burkinabe government.
For my PhD, I conducted extensive fieldwork in Senegal, collaborating with interdisciplinary teams to gather data on transhumant practices. Using this data, I developed a multi-objective optimization framework to model herd movement decisions. Furthermore, I created a real-time monitoring system for transhumant herds based on discrete mathematics. My PhD research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).

Caryl Benjamin Member since: Wed, Dec 12, 2012 at 10:04 AM

BS Community Development

Community assembly after intervention by coral transplantation

The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept