Community

Displaying 10 of 37 results for 'Ryan Long'

Yong Yang Member since: Wed, Nov 12, 2008 at 02:32 PM Full Member Reviewer

Ronggang Cong Member since: Mon, Apr 22, 2013 at 10:10 AM

Ph.D.

John Dong Member since: Sun, Feb 23, 2014 at 08:45 PM

PhD

Xiaotian Wang Member since: Fri, Mar 28, 2014 at 02:23 AM

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Grant Snitker Member since: Mon, Apr 21, 2014 at 09:39 PM Full Member Reviewer

Ph.D., Anthropology, Arizona State University

I am an environmental archaeologist, specializing in charcoal analysis, computational and analytical proxy modeling, and quantitative methods to understand the dynamic relationship between fire, humans, and long-term environmental change. I work primarily in the Western United States and the Western Mediterranean. I am passionate about our public lands and ensuring that everyone has access and opportunity to experience them.

Envrionmental Archaeology, Fire Ecology, GIS, Agent-based modeling, Geoarchaeology

Jie Song Member since: Tue, Aug 11, 2015 at 04:41 PM Full Member Reviewer

Anh Nong Member since: Thu, Jan 21, 2016 at 10:42 AM

Master on Integrated Water Resources Management

Interested in IWRM approach, analyzing coupled human-water relationship, Hydrological modelling, Bayesian networks, Agent based modelling

Jaehyun Song Member since: Sun, Jan 15, 2017 at 08:39 AM

Ph.D. Candidate in Political Science, Master of Political Science

Voting Behavior

Lars Spång Member since: Wed, Mar 15, 2017 at 10:21 PM

Phd Archaeology

Currently I develop ABM models to follow up issues raised in my previous research on trade between hunting groups and long-distance trade, territoriality and migration patterns.

Isaac Ullah Member since: Mon, Mar 27, 2017 at 05:09 PM Full Member Reviewer

PhD, Anthropology, Arizona State University, MA, Anthropology, University of Toronto, BSc, Anthropology, University of California, Davis

Isaac IT Ullah, PhD, (Arizona State University 2013) Dr. Ullah is a computational archaeologist who employs GIS and simulation modeling to understand the long-term dynamics of humans and the Earth System. Dr. Ullah is particularly interested in the social and environmental changes surrounding the advent of farming and animal husbandry. His focus is on Mediterranean and other semi-arid landscapes, and he conducts fieldwork in Jordan, Italy, and Kazakhstan. His field work includes survey for and excavation of early agricultural sites as well as geoarchaeological analyses of anthropogenic landscapes. His specialties include landscape evolution, complex adaptive systems science, computational methods, geospatial analysis, and imagery analysis.

Computational Archaeology, Food Production, Forager-Farmer transition, Neolithic, Agro-pastoralism, Erosion Modeling, Anthropogenic Landscapes, Geoarchaeology, Modeling and Simulation, GIS, Imagery Analysis, ABM, Mediterranean

Displaying 10 of 37 results for 'Ryan Long'

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept