Displaying 10 of 24 results for "Russell Toth" clear search
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
My work centers on evaluating the adaptiva capacity and proposing strategies for managing forest under climate change in both temperate and tropical areas.
My research interests stand between natural resource management and ecological economics. The aim of my PhD project responds to the increasing demand for cross-disciplinary agent-based models that examine the disjunction between economic growth and more sustainable use of natural resources.
My research attempts to test the effectiveness of different governance and economic frameworks on managing natural resources sustainably at both regional and national levels. The goal is to simulate how communities and institutions manage the commons in complex socio-ecological systems through several case-studies, e.g. rainforest management in Australia. It is hoped that the models will highlight which combination of variables lead to positive trends in both economic and environmental indicators, which could stimulate more sustainable practices by governments, private sectors and civil society.
My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.
As a Program Associate in the Research Competitiveness Program, I work on a diverse portfolio of science and technology based development projects. These projects frequently involve managing peer-review processes for grant competitions and other research and development activities as well as producing their associated progress reports. Projects are often associated with the regional and national development plans of various governments and institutions both domestic and international.
I have a BS in Earth Sciences and a PhD in Resource and Environmental Economics. I have more than 25 years of experience doing research and teaching and advising students in systems thinking, scenario development, simulation, and ecological economics. Presently, I am an Associate Professor in the Department of Computational & Data Sciences at George Mason University, and a member of the Center for Social Complexity. I teach the introductory courses on Computational Social Sciences at both the undergraduate and graduate levels, as well as beginning and advanced courses in complex systems, modeling, and simulation. My current research focuses on the use of scenario development and integrated modeling as applied to social-ecological systems. My recent work has focused on applying these to issues related to climate change economics and policy, including new technologies for greenhouse gas removal and solar radiation management.
Matteo Richiardi is an internationally recognised scholar in micro-simulation modelling (this includes dynamic microsimulations and agent-based modelling). His work on micro-simulations involves both methodological research on estimation and validation techniques, and applications to the analysis of distributional outcomes, the functioning of the labour market and welfare systems. He is Chief Editor of the International Journal of Microsimulation. Examples of his work are the two recent books “Elements of Agent-based Computational Economics”, published by Cambridge University Press (2016), and “The political economy of work security and flexibility: Italy in comparative perspective”, published by Policy Press (2012).
Displaying 10 of 24 results for "Russell Toth" clear search