Displaying 10 of 74 results for "Marcel Volosin" clear search
After being the economic development officer for the Little/Salmon Carmacks First Nation, Tim used all his spare time trying to determine a practical understanding of the events he witnessed. This led him to complexity, specifically human emergent behaviour and the evolutionary prerequisites present in human society. These prerequisites predicted many of the apparently immutable ‘modern problems’ in society. First, he tried disseminating the knowledge in popular book form, but that failed – three times. He decided to obtain PhD to make his ‘voice’ louder. He chose sociology, poorly as it turns out as he was told his research had ‘no academic value whatsoever’. After being forced out of University, he taught himself agent-based modelling to demonstrate his ideas and published his first peer-reviewed paper without affiliation while working as a warehouse labourer. Subsequently, he managed to interest Steve Keen in his ideas and his second attempt at a PhD succeeded. His most recent work involves understanding the basic forces generated by trade in a complex system. He is most interested in how the empirically present evolutionary prerequisites impact market patterns.
Economics, society, complexity, systems, ecosystem, thermodynamics, agent-based modelling, emergent behaviour, evolution.
Leigh Tesfatsion received the Ph.D. degree in economics from the University of Minnesota, Mpls., in 1975, with a minor in mathematics. She is Research Professor of Economics, Professor Emerita of Economics, and Courtesy Research Professor of Electrical & Computer Engineering, all at Iowa State University. Her principal current research areas are electric power market design and the development of Agent-based Computational Economics (ACE) platforms for the performance testing of these designs. She is the recipient of the 2020 David A. Kendrick Distinguished Service Award from the Society for Computational Economics (SCE) and an IEEE Senior Member. She has served as guest editor and associate editor for a number of journals, including the IEEE Transactions on Power Systems, the IEEE Transactions on Evolutionary Computation, the Journal of Energy Markets, the Journal of Economic Dynamics and Control, the Journal of Public Economic Theory, and Computational Economics. Online Short Bio
Agent-based computational economics (ACE); development and use of ACE test beds for the study of electric power market operations; development and use of ACE test beds for the study of water, energy, and climate change
The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.
To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.
land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling
Associate Professor
School of Management Science and Engineering, Shandong Technology and Business University (Yantai 264005, P. R. China)
Ph. D. Degree, 09/2009 – 07/2015
School of Economics and Management, Beihang University (P. R. China)
M. A. Degree, 09/2003 – 02/2006
The Institute of Systems Engineering, Dalian University of Technology (P. R. China)
B. A. Degree, 09/1999 – 07/2003
Department of Information and Control Engineering, Zhengzhou University of Light Industry (P. R. China)
Visiting Scholar at GECS – Research Group of Experimental and Computational Sociology (March, 2017 – February, 2018)
Università degli Studi di Brescia (Italy)
Co-supervisor: Professor Flaminio Squazzoni
Summer school in ‘Agent-based modeling for social scientists’ (September 4-8, 2017)
University of Brescia, Italy
Instructors: Flaminio Squazzoni, Simone Gabbriellini, Nicolas Payette, Federico Bianchi
The Santa Fe Institute’s Massive Open Online Course: Introduction to Agent-Based Modeling (Jun 5 – September 8, 2017)
The Santa Fe Institute, Complexity Explore Web: abm.complexityexploer.org
Instructors: Bill Rand
Summer school in ‘Complex systems and management’ (July 2-12, 2012)
National Defense University, P. R. China
Instructors: Xinjun Mao, Yongfang Liu, Dinghua Shi, Qiyue Cheng
Routine dynamics, Agent-based modeling, Computational social/organization science, Industrial systems engineering, etc.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
I have been working in the software implementation of different kinds of complex networks inspired in real-life populations. My software may be classified on several categories: complex networks, Aedes aegypti development, dengue epidemics, cultural behavior of populations. I am also researching in education of Deaf people in Colombia.
Displaying 10 of 74 results for "Marcel Volosin" clear search