Displaying 10 of 43 results for "Christian Ringle" clear search
Moira Zellner’s academic background lies at the intersection of Urban and Regional Planning, Environmental Science, and Complexity. She has served as Principal Investigator and Co-Investigator in interdisciplinary projects examining how specific policy, technological and behavioral factors influence the emergence and impacts of a range of complex socio-ecological systems problems, where interaction effects make responsibilities, burdens, and future pathways unclear. Her research also examines how participatory complex systems modeling with stakeholders and decision-makers can support collaborative policy exploration, social learning, and system-wide transformation. Moira has taught a variety of courses and workshops on complexity-based modeling of socio-ecological systems, for training of researchers, practitioners, and decision-makers in the US and abroad. She has served the academic community spanning across the social and natural sciences, as reviewer of journals and grants and as a member of various scientific organizations. She is dedicated to serving the public through her engaged research and activism.
Applications of agent-based modeling to urban and environmental planning
Participatory modeling
The Global Resource Observatory (GRO)
The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.
GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.
Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Electrical and Computer Engineer (NTU, Athens), M.Sc. and Ph.D. on Artificial Intelligence (Univ. Paris VI, France). Formerly senior researcher in the Institute of Communication and Computer Systems (NTU, Athens). I have taught a variety of courses on intelligent, complex and biological systems and cognitive science. I have participated in numerous national and european R&D projects and I have authored about a hundred articles in journals, books and conference proceedings, at least half of them as a single author. I am frequent reviewer for journals, conferences and research grants. My research interests lie on the intersection of biological, complex and cognitive systems and applications.
Area: Complex Biological, Social and Sociotechnical Systems
Specific focus: Origins of intelligent behavior
My research focuses pn the intersection between game theory, social networks, and multi-agent simulations. The objectives of this scientific endeavor are to inform policy makers, generate new technological applications, and bring new insight into human and non-human social behavior. My research focus is on the transformation of cultural conventions, such as signaling and lexical forms, and on many cell models models of stem cell derived clonal colony.
Because the models I analyze are formally defined using game theory and network theory, I am able to approach them with different methods that range from stochastic process analysis to multi-agent simulations.
I am interested in the dynamics of cultural transmission, especially in diffusion of religious innovations (concepts and practices) across a population. In my dissertation, I am targeting this issue while studying and modelling the development of Christian meal practices in the first four centuries CE across the Roman Mediterranean.
I am fascinated by unraveling water-scarcity patterns. I am an expert in Integrated Assessment Modelling and Water Footprint Assessment. The concepts and tools that I have developed and applied all aim at availing knowledge at scales relevant to decision-makers in the water sector. During my PhD at the University of Twente I evaluated how spatiotemporal patterns of water availability relate to patterns of water use for a river basin in the semi-arid Northeast of Brazil. I have used agent-based modelling and developed the downstreamness concept to analyze the emergence of basin closure. This concept is helpful to water managers for identifying priority locations for intervention inside a river basin system. As a postdoc I continued to evaluate the relation between water use and availability and further broadened my scope to a wider range of related topics.
Displaying 10 of 43 results for "Christian Ringle" clear search