Displaying 10 of 94 results for "Dara Vancea" clear search
My interests lie in the intersection of economics, networks, and computation. I am currently studying labour dynamics as a process where people flow throughout the economy by moving from one firm to another. I study these flows by looking at detailed data about employment histories of each individual and every firm in entire economies. Using this information, I construct networks of firms in order to map the roads that people take throughout their careers. This allows to study labour markets at an unprecedented fine-grained level of detail. I employ agent-based computing methods to understand how economic shocks and policies alter labour flows, which eventually translate into unemployment and other related problems.
Fabian Adelt graduated in computer-sciences with a minor in sociology of technology (degree: Diplom-Informatiker) at TU Dortmund University in 2011. Currently, he is research fellow at the Technology Studies Group and involved in the project “Collaborative Data- and Risk-Management in Future Grids – A Simulation Study” (KoRiSim). Between 2012 and 2015 he worked on the project “Mixed Modes of Governance as a Means of Risk Management in Complex Systems” (RiskSim). His research interests entail agent-based modelling and simulating of socio-technical systems, especially focussing on governance issues and actors’ reactions on interventions. Experience covers the fields of mobility and energy.
My research uses modeling to understand complex coupled human and natural systems, and can be generally described as computational social science. I am especially interested in modeling water management systems, in both archaeological and contemporary contexts. I have previously developed a framework for modeling general archaeological complex systems, and applied this to the specific case of the Hohokam in southern Arizona. I am currently engaged in research in data mining to understand contemporary water management strategies in the U.S. southwest and in several locations in Alaska. I am also a developer for the Repast HPC toolkit, an agent-based modeling toolkit specifically for high-performance computing platforms, and maintain an interest in the philosophy of science underlying our use of models as a means to approach complex systems. I am currently serving as Communications Officer for the Computational Social Science Society of the Americas.
I am strongly interested in ecological modeling and complex system and truly enjoyed working with a variety of tools to uncover patterns in empirical data and explore their ecological and evolutionary consequences. My primary research is to conduct research in the field of ‘ecological complexity’, including the development of appropriate descriptive measure to quantify the structural, spatial and temporal complexity of ecosystem and the identification of the mechanism that generate this complexity, through modeling and field studies.
Currently investigated is how biological characteristics of invasive species (dispersal strategies and demographic processes) interact with abiotic variables and resource distribution to determine establishment success and spread in a complex heterogeneous environment (Individual based modelling integrated with GIS technologies).
I am an Associate Professor of Data Analytics at Trinity Business School, Trinity College Dublin, The University of Dublin and a Senior Fellow of the Higher Education Academy. I was the Director of Postgraduate Teaching at the Department of Management Science, Lancaster University Management School overseeing MSc programmes in Business Analytics, Management Science and Marketing Analytics, Logistics and Supply Chain Management, e-Business and Innovation, and Project Management.
My research interests lie in the areas of predictive analytics using simulation. I am particularly interested in simulation modelling methodology (symbiotic simulation, hybrid modelling, agent-based simulation, discrete-event simulation) with applications in operations and supply chain management (e.g. hospital, manufacturing, transportation, warehouse) and social dynamics (e.g. diffusion of perception). Currently, I am the associate editor of the Journal of Simulation and the secretary of The OR Society‘s Special Interest Group in Simulation. I am the track coordinator of Agent-Based Simulation for the Winter Simulation Conference 2018.
I have a BS in Earth Sciences and a PhD in Resource and Environmental Economics. I have more than 25 years of experience doing research and teaching and advising students in systems thinking, scenario development, simulation, and ecological economics. Presently, I am an Associate Professor in the Department of Computational & Data Sciences at George Mason University, and a member of the Center for Social Complexity. I teach the introductory courses on Computational Social Sciences at both the undergraduate and graduate levels, as well as beginning and advanced courses in complex systems, modeling, and simulation. My current research focuses on the use of scenario development and integrated modeling as applied to social-ecological systems. My recent work has focused on applying these to issues related to climate change economics and policy, including new technologies for greenhouse gas removal and solar radiation management.
Ifigeneia Koutiva (female) is a senior environmental engineer, holding a PhD in Civil Engineering (NTUA), a Postgrad Diploma in Water Resources and Environmental Management (Un. of Belgrade - e-learning), an MSc in Environmental Technology (Imperial College London) and an MSc in Mining and Metallurgy Engineering (NTUA). Her PhD was funded by the Greek Ministry of Education through Heracleitous II scholarship. She is currently a postdoctoral scholar of the State Scholarship Foundation (IKY) for 2020 - 2021. She has 10 years of experience in various EU funded research projects, both as a researcher and as a project manager, in the fields of socio-technical simulation, urban water modelling, modelling and assessment of alternative water technologies, artificial intelligence, social quantitative research, KPI and water indicators development and assessment and analysis of large data sets. She is very competent with programming for creating ICT tools for agent based modelling and data analysis tools and she is an experienced user of spatial analysis software and tools. She is also actively involved in the design and implementation of numerous consultation workshops and conferences. She has authored more than 20 scientific journal articles, conferences articles and research reports.
My research interests lay within the interface of social, water and modelling sciences. I have created tools that explore the effects of water demand management policies in domestic urban water demand behaviour and the effects of civil decision making in flood risk management. I am interested in agent based modelling, artificial intelligence techniques, the creation of ABM tools for civil society, Circular Economy, distributed water technologies and overall urban water management.
The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.
To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.
land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling
Dr. Cheick Amed Diloma Gabriel Traore is a researcher specializing in modeling multi-agent systems. He earned his PhD from Cheikh Anta Diop University (UCAD) in Senegal. His doctoral research focused on the formalization and simulation of Sahelian transhumance as a complex adaptive system. Utilizing mathematical and computational techniques, he developed agent-based models to analyze the spatiotemporal dynamics of transhumant herds, taking into account factors such as herd behavior, environmental conditions, and socio-economic pressures.
To design the models for his dissertation, Dr. Traore conducted extensive fieldwork in Senegal. He collaborated with interdisciplinary teams to collect data on transhumant practices within the Sahelian ecosystem. With this data, he created a multi-objective optimization framework to model the movement decisions of transhumants and their herds. Additionally, he developed a real-time monitoring system for transhumant herds based on discrete mathematics. His doctoral research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).
Before pursuing his PhD, Dr. Traore obtained both a master’s and a bachelor’s degree in mathematics from Nazi Boni University in Burkina Faso. During his studies, he developed a rectangular grid for image processing and applied the Hough transform to detect discrete lines. His master’s and bachelor’s degrees were funded by the Burkinabe government.
Currently, Dr. Traore is an Assistant Professor at the Institute of Computer Engineering and Telecommunications at the Polytechnic School of Ouagadougou. In addition to his role in student training, he is working on integrating viability theory with agent-based modeling to address sustainable development challenges in rapidly changing and complex socio-economic systems. His research has been published in several renowned conferences and scientific journals, and he continues to actively contribute to the fields of complex systems modeling and image processing.
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
Displaying 10 of 94 results for "Dara Vancea" clear search