Displaying 10 of 237 results for "Oto Hudec" clear search
The Ph.D. research project is mainly focused on the study of the influence of emotional intelligence inside decision-making processes and on the social and emotional aspects of organizations.Furthermore, the research has taken into account the generative science paradigm: in this way, the general aim is the development of social simulations able to account organizational processes related with emotions and with the emotional intelligence from the bottom-up.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
I am fascinated by unraveling water-scarcity patterns. I am an expert in Integrated Assessment Modelling and Water Footprint Assessment. The concepts and tools that I have developed and applied all aim at availing knowledge at scales relevant to decision-makers in the water sector. During my PhD at the University of Twente I evaluated how spatiotemporal patterns of water availability relate to patterns of water use for a river basin in the semi-arid Northeast of Brazil. I have used agent-based modelling and developed the downstreamness concept to analyze the emergence of basin closure. This concept is helpful to water managers for identifying priority locations for intervention inside a river basin system. As a postdoc I continued to evaluate the relation between water use and availability and further broadened my scope to a wider range of related topics.
Doing research on how the flood insurance system in the UK should be structured in the future to make it resilient for environmental change.
I am an assistant professor in the Department of Computer Science at the Hamedan University of Technology, Hamedan, IRAN. I have completed my Ph.D. in Futures Studies (foresight) as an interdisciplinary field, an intersection of social sciences and engineering. My
background comes from computer science. For my Ph.D., I decided to pursue my education in Futures Studies; the field I thought I could apply engineering principles such as requirements engineering, analytical skills, design, modeling, planning, and, test engineering to shape the
desired futures. In PhD, I started the complex systems research field and agent-based modeling with NetLogo. In addition to several publications of papers, I published a book on complex systems titled “Futures Studies in Complex Systems” which was awarded as the book of the year by the Iranian Foresight Association.
Since May 2021, I started a research collaboration with TISSS Lab at the Johannes Gutenberg University Mainz as a project coordinator, the German Research Centre for AI, Human-Centered Multimedia, and the Centre for Research in Social Simulation. The project title is “AI for Assessment” and its objective is to understand the status quo and the future options of AI-based social assessment in public service provisions to help in the creation of improved AI technology for social welfare systems.
On the executive side, I have also various experiences, including head of the department, deputy of the Technology Incubator Center, director of university’s research affairs, and head of the International Scientific Cooperation Office.
Complex Systems, Social Modeling and Simulation
Engineering the Futures
For my Ph.D. thesis, I developed a system to play poker.
I’m interested to see whether a similar approach can be applied to agent based models.
I study human dimensions of natural resource management and resource use by under-represented populations—often in developing nations—to enhance our understanding of conflicts involving land use, natural resources, and conservation from an interdisciplinary, systematic lens. My research spans subjects such as common pool resource management and policy, decentralization, and land use/land cover change drivers and trends relating to population rise and environmental change.
Ecology - Natural Resources Management (Community-based management)
I worked on natural resources management modelling in STELLA. I developed a technical and scientific model to analyze soil, climate and biological conditions to explain how Bamboo ecosystem works and how people in Cundinamarca, Colombia could focus on a sustainable model for use and manage forestry resources.
Also, I worked on the seventh framework program named: Community-based management of Environmental Challenges in Latin America -COMET-LA-. The project built a learning arena with scientists, civil society and government to identify sustainable models for governance of natural resources in social-ecological systems located in a rural context from Colombia, México and Argentina.
I am interesting in research on Modelling of governance and Community-based management of natural resources.
I am interested in questions of method, and in the application of computational social models to a wide variety of national security questions (such as counterterrorism and counterinsurgency) as well as decision-making around complex natural resources such as water. My methods interest center on the use of qualitative social theory to inform the structure of computational social models, and the ways in which such models handle qualitative data. This raises questions around the nature of data and the ways in which computational social models convey information to decision-makers.
Research into the awareness and understanding of the general population regarding the work of St. Jude. Research into the behavior of donors to St. Jude.
Displaying 10 of 237 results for "Oto Hudec" clear search