Displaying 10 of 68 results for "John Nay" clear search
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Peter Gerbrands is a Post-Doctoral Researcher at the of Utrecht University School of Economics, where is develops the data infrastructure for FIRMBACKBONE. He teaches data science courses: “Applied Data Analysis and Visualization” and “Introduction to R”. His research interests are agent-based simulations, social network analysis, complex systems, big data analysis, statistical learning, and computational social science. He applies his skills primarily for policy analysis, especially related to illicit financial flows, i.e. tax evasion, tax avoidance and money laundering and has published in Regulation & Governance, and EPJ Data Science. Prior to becoming an academic, Peter had a long career in IT consulting. In Fall 2023, he is a Visiting Research Scholar at SUNY Binghamton in NY.
agent-based simulations
social network analysis
complex systems
big data analysis
statistical learning
computational social science
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
Mazaher Kianpour is a PhD candidate at NTNU. He holds a Bachelor’s degree in Computer Engineering (Software) from the Payame Noor University. He obtained his Master’s degree in Architecture of Computer Systems from Shahid Beheshti University, Tehran, Iran. He started his PhD in Information Security at NTNU in May 2018. His PhD research lies at the intersection of economics and information security with a socio-technical perspective. He has several years of work experience at Tehran University of Medical Sciences, and his professional training includes Computer Networks, Cybersecurity and Risk Management.
My main research interest is modelling of information security, business operations and deterrents in complex ICT ecosystem. I will in particular focus on the complex interaction between various stakeholders and actors in the information security business domain. In order to model and better understand the information security ecosystem, I rely on agent-based simulation and quantitative modelling techniques such as stochastic modelling, discrete event simulations and game theory. Of particular interest is to gain increased understanding on how various security threats and measures influence business operations in the digital ecosystem.
http://learnmem.cshlp.org/content/27/1.cover-expansion
(Cover simulation using NetLogo, January 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. Learn. Mem. 2020. 27: 20-32 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press
http://learnmem.cshlp.org/content/27/12.cover-expansion
(paper using NetLogo, December 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period Learn. Mem. 2020. 27: 493-502 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press
Enver Oruro, BA Psych. PhD(s).
Computational Psychologist
[email protected]
https://br.linkedin.com/in/enveroruro
Neurocomputational and Language Processing Laboratory, Institute of Physics/ UFRGS
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry/ UFRGS
Meeting Organization
2009 First Meeting on Complex Systems -Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima
2010 Second Meeting on Complex Systems - College of Psychologists of Peru / Colegio de Psicólogos del Perú (CPsP) Lima
2012 3rd Meeting on Complex Systems – Computational Social Psychology, /Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima February 2012 https://www.comses.net/events/185/
http://www.neurocienciaperu.org/home/3ra-reunion-de-sistemas-complejos-psicologia-social-computacional
2012 4th Meeting on Complex Systems – Cognotecnology and Cognitive Science, Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima July 2012 https://www.comses.net/events/212/
2014 5th Meeting on Complex Systems – Complexity Roadmap. The Imperial City of the Incas, Cusco, April. https://www.comses.net/events/312/
2015 Chair of “e-session on Neuroscience and Behavior” UNESCO UniTwin CS-DC’15
2015 Chair of “e-session on Social Psychology” UNESCO UniTwin CS-DC’15
CS-DC’15 (Complex Systems Digital Campus ’15 – World e-Conference) is organizing the e-satellites of CCS’15, the international Conference on Complex Systems. It is devoted to all scientists involved in the transdisciplinary challenges of complex systems, crossing theoretical questions with experimental observations of multi-level dynamics. CCS’15 is organized by the brand new ASU-SFI Center for Biosocial Complex Systems. Arizona State University, (USA) from Sept 28 to Oct 2, 2015, in close collaboration with the Complex Systems Society and the Santa Fe Institute. from http://cs-dc-15.org/
2018 Seminar in “Mother-Infant Attachment and Supercomputing”, NY. USA and Porto Alegre, Brazil, August 09. https://www.comses.net/events/499/
2019 Seminar in Experimental and Computational Studies on Mother-Infant Relationship October 8 and 15, 2019 ICBS, /Determine the neural pathways by which the nervous system of the neonates establish attachment with their mothers is a problem that has motivated hypothesis and experiments at several scale levels, from neurotransmission to ethological level. UFRGS, Porto Alegre, Brazil. https://www.comses.net/events/549/
2020 Seminar in Maternal Infant Relationship Studies: Neuroscience and Artificial Intelligence March 7 and 9
Goals 1. Discuss a Roadmap for mother-Infant relationship research in the framework of the UNESCO Complex System Digital Campus project. https://www.comses.net/events/570/ https://sites.google.com/view/envermiguel/seminar-in-maternal-infant-relationship-studies?read_current=1
https://drive.google.com/file/d/1-FVQXBXy4RLKIQA-RBx3KFLJxyBsnyCW/view?usp=sharing
Linea de investigacion: Estrategias de modelamiento en Psicobiologia y Psicologia Social
/ Linea estrategica 1: bases biologicas de la cognicion social desde sistemas complejos
Aniruddha Belsare is a disease ecologist with a background in veterinary medicine, interspecific transmission, pathogen modeling and conservation research. Aniruddha received his Ph.D. in Wildlife Science (Focus: Disease Ecology) from the University of Missouri in 2013 and subsequently completed a postdoctoral fellowship there (University of Missouri, May 2014 – June 2017). He then was a postdoctoral fellow in the Center for Modeling Complex Interactions at the University of Idaho (June 2017 - March 2019) and later a Research Associate with the Boone and Crockett Quantitative Wildlife Center, Michigan State University (March 2019 - Jan 2021). He was a Research Scientist in the Civitello Disease Ecology Lab at Emory University from Jan 2021 to Jan 2023. Currently, Aniruddha is an Assistant Professor of Disease Ecology at the College of Forestry, Wildlife & Environment / College of Veterinary Medicine at Auburn University.
My research interests primarily lie at the interface of ecology and epidemiology, and include host-pathogen systems that are of public health or conservation concern. I use ecologic, epidemiologic and model-based investigations to understand how pathogens spread through, persist in, and impact host populations. Animal disease systems that I am currently working on include canine rabies, leptospirosis, chronic wasting disease, bighorn sheep pneumonia, raccoon roundworm (Baylisascaris procyonis), chytridiomycosis, and Lyme disease.
I am Colombian with passion for social impact. I believe that change starts at the individual, community, local and then global level. I have set my goal in making a better experience to whatever challenges I encounter and monetary systems and governance models is what concerns me at the time.
In my path to understanding and reflecting about these issues I have found my way through “Reflexive Modeling”. Models are just limited abstractions of reality and is part of our job as researchers to dig in the stories behind our models and learn to engage in a dialogue between both worlds.
Technology empowers us to act locally, autonomously and in decentralized ways and my research objective is to, in a global context, find ways to govern, communicate and scale the impact of alternative monetary models. This with a special focus on achieving a more inclusive and community owned financial system.
As a Ph.D. fellow for the Agenda 2030 Graduate School, I expect to identify challenges and conflicting elements in the sustainability agenda, contribute with new perspectives, and create solutions for the challenges ahead
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
I am an assistant professor in the Department of Computer Science at the Hamedan University of Technology, Hamedan, IRAN. I have completed my Ph.D. in Futures Studies (foresight) as an interdisciplinary field, an intersection of social sciences and engineering. My
background comes from computer science. For my Ph.D., I decided to pursue my education in Futures Studies; the field I thought I could apply engineering principles such as requirements engineering, analytical skills, design, modeling, planning, and, test engineering to shape the
desired futures. In PhD, I started the complex systems research field and agent-based modeling with NetLogo. In addition to several publications of papers, I published a book on complex systems titled “Futures Studies in Complex Systems” which was awarded as the book of the year by the Iranian Foresight Association.
Since May 2021, I started a research collaboration with TISSS Lab at the Johannes Gutenberg University Mainz as a project coordinator, the German Research Centre for AI, Human-Centered Multimedia, and the Centre for Research in Social Simulation. The project title is “AI for Assessment” and its objective is to understand the status quo and the future options of AI-based social assessment in public service provisions to help in the creation of improved AI technology for social welfare systems.
On the executive side, I have also various experiences, including head of the department, deputy of the Technology Incubator Center, director of university’s research affairs, and head of the International Scientific Cooperation Office.
Complex Systems, Social Modeling and Simulation
Engineering the Futures
Displaying 10 of 68 results for "John Nay" clear search