Displaying 10 of 63 results for "Eric Garine" clear search
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
As a data scientist, I employ a variety of ecoinformatic tools to understand and improve the sustainability of complex social-ecological systems. I also apply Science and Technology Studies lenses to my modeling processes in order to see potential ways to make social-ecological system management more just. I prefer to work collaboratively with communities on modeling: teaching mapping and modeling skills, collaboratively building data representations and models, and analyzing and synthesizing community-held data as appropriate. At the same time, I look for ways to create space for qualitative and other forms of knowledge to reside alongside quantitative analysis, using mixed and integrative methods.
Recent projects include: 1) Studying Californian forest dynamics using Bayesian statistical models and object-based image analysis (datasets included forest inventories and historical aerial photographs); 2) Indigenous mapping and community-based modeling of agro-pastoral systems in rural Zimbabwe (methods included GPS/GIS, agent-based modeling and social network analysis); 3) Supporting Tribal science and environmental management on the Klamath River in California using historical aerial image analysis of land use/land cover change and social networks analysis of water quality management processes; 4) Bayesian statistical modeling of community-collected data on human uses of Marine Protected Areas in California.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
Aniruddha Belsare is a disease ecologist with a background in veterinary medicine, interspecific transmission, pathogen modeling and conservation research. Aniruddha received his Ph.D. in Wildlife Science (Focus: Disease Ecology) from the University of Missouri in 2013 and subsequently completed a postdoctoral fellowship there (University of Missouri, May 2014 – June 2017). He then was a postdoctoral fellow in the Center for Modeling Complex Interactions at the University of Idaho (June 2017 - March 2019) and later a Research Associate with the Boone and Crockett Quantitative Wildlife Center, Michigan State University (March 2019 - Jan 2021). He was a Research Scientist in the Civitello Disease Ecology Lab at Emory University from Jan 2021 to Jan 2023. Currently, Aniruddha is an Assistant Professor of Disease Ecology at the College of Forestry, Wildlife & Environment / College of Veterinary Medicine at Auburn University.
My research interests primarily lie at the interface of ecology and epidemiology, and include host-pathogen systems that are of public health or conservation concern. I use ecologic, epidemiologic and model-based investigations to understand how pathogens spread through, persist in, and impact host populations. Animal disease systems that I am currently working on include canine rabies, leptospirosis, chronic wasting disease, bighorn sheep pneumonia, raccoon roundworm (Baylisascaris procyonis), chytridiomycosis, and Lyme disease.
I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.
I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.
I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.
I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.
As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.
I am Professor in Computational Resilience Economics at the University of Twente (the Netherlands), which I joined in 2010. In September 2017 I also joined University of Technology Sydney (Australia) as Professor of Computational Economic Modeling working with spatial simulation models to study socioeconomic impacts of disasters and emergence of resilience across scales. I was honored to be elected as a Member of the De Jonge Akademie of the Royal Dutch Academy of Sciences (DJA/ KNAW in 2016) and of Social Sciences Council (SWR/KNAW in 2017). From 2009 to 2015 I have been working part-time as an economist at Deltares – the leading Dutch knowledge institute in the field of water management – specializing in economics of climate change, with focus on floods and droughts management.
I am interested in the feedbacks between policies and aggregated outcomes of individual decisions in the context of spatial and environmental policy-making. The issue of social interactions and information diffusion through networks to affect economic behavior is highly relevant here. My research line focuses on exploring how behavioral changes at micro level may lead to critical transitions (tipping points/regime shifts) on macro level in complex adaptive human-environment systems in application to climate change economics. I use agent-based modelling (ABM) combined with social science methods of behavioral data collection on individual decisions and social networks. This research line has been distinguished by the NWO VENI and ERC Starting grants and the Early Career Excellence award of the International Environmental Modeling Society (iEMSs). In 2018 I was invited to serve as the Associate Editor of the Environmental Modelling & Software journal, where I have been a regular Member of the Editorial Board since 2013.
My initial training was in cadastre and geodesy (B.Eng from the Distrital University, UD, Colombia). After earning my Master’s degree in Geography (UPTC, Colombia) in 2003, I worked for the “José Benito Vives de Andreis” marine and coastal research institute (INVEMAR) and for the International Center for Tropical Agriculture (CIAT). Three years later, in 2006, I left Colombia to come to Canada, where I began a PhD in Geography with a specialization in modelling complex systems at Simon Fraser University (SFU), under the direction of Dr. Suzana Dragicevic (SAMLab). In my dissertation I examined the topic of spatial and temporal modelling of insect epidemics and their complex behaviours. After obtaining my PhD in 2011, I began postdoctoral studies at the University of British Columbia (2011) and the University of Victoria (2011-2013), where I worked on issues concerning the spatial and temporal relationships between changes in indirect indicators of biodiversity and climate change.
I am an Associate Professor in the Department of Geography at the University of Montreal. My research interests center around the incorporation of artificial intelligence and machine learning techniques into the development Agent-Based Models to solve complex socio-ecological problems in different kind of systems, such as urban, forest and wetland ecosystems.
The core of my research projects aim to learn more about spatial and temporal interactions and relationships driving changes in our world, by focusing on the multidisciplinary nature of geographical information science (GIScience) to investigate the relationships between ecological processes and resulting spatial patterns. I integrate spatial analysis and modeling approaches from geographic information science (GIScience) together with computational intelligence methods and complex systems approaches to provide insights into complex problems such as climate change, landscape ecology and forestry by explicitly representing phenomena in their geographic context.
Specialties: Agent-based modeling, GIScience, Complex socio-environmental systems, Forestry, Ecology
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
Mazaher Kianpour is a PhD candidate at NTNU. He holds a Bachelor’s degree in Computer Engineering (Software) from the Payame Noor University. He obtained his Master’s degree in Architecture of Computer Systems from Shahid Beheshti University, Tehran, Iran. He started his PhD in Information Security at NTNU in May 2018. His PhD research lies at the intersection of economics and information security with a socio-technical perspective. He has several years of work experience at Tehran University of Medical Sciences, and his professional training includes Computer Networks, Cybersecurity and Risk Management.
My main research interest is modelling of information security, business operations and deterrents in complex ICT ecosystem. I will in particular focus on the complex interaction between various stakeholders and actors in the information security business domain. In order to model and better understand the information security ecosystem, I rely on agent-based simulation and quantitative modelling techniques such as stochastic modelling, discrete event simulations and game theory. Of particular interest is to gain increased understanding on how various security threats and measures influence business operations in the digital ecosystem.
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
Displaying 10 of 63 results for "Eric Garine" clear search