Displaying 10 of 162 results for "I Nikolic" clear search
I am an assistant professor in the Department of Computer Science at the Hamedan University of Technology, Hamedan, IRAN. I have completed my Ph.D. in Futures Studies (foresight) as an interdisciplinary field, an intersection of social sciences and engineering. My
background comes from computer science. For my Ph.D., I decided to pursue my education in Futures Studies; the field I thought I could apply engineering principles such as requirements engineering, analytical skills, design, modeling, planning, and, test engineering to shape the
desired futures. In PhD, I started the complex systems research field and agent-based modeling with NetLogo. In addition to several publications of papers, I published a book on complex systems titled “Futures Studies in Complex Systems” which was awarded as the book of the year by the Iranian Foresight Association.
Since May 2021, I started a research collaboration with TISSS Lab at the Johannes Gutenberg University Mainz as a project coordinator, the German Research Centre for AI, Human-Centered Multimedia, and the Centre for Research in Social Simulation. The project title is “AI for Assessment” and its objective is to understand the status quo and the future options of AI-based social assessment in public service provisions to help in the creation of improved AI technology for social welfare systems.
On the executive side, I have also various experiences, including head of the department, deputy of the Technology Incubator Center, director of university’s research affairs, and head of the International Scientific Cooperation Office.
Complex Systems, Social Modeling and Simulation
Engineering the Futures
For my Ph.D. thesis, I developed a system to play poker.
I’m interested to see whether a similar approach can be applied to agent based models.
I am interested in modeling social behavior. I have been working in the field of labor economics and industrial relations and how micro-simulations determine aggregate outcomes.
I study human dimensions of natural resource management and resource use by under-represented populations—often in developing nations—to enhance our understanding of conflicts involving land use, natural resources, and conservation from an interdisciplinary, systematic lens. My research spans subjects such as common pool resource management and policy, decentralization, and land use/land cover change drivers and trends relating to population rise and environmental change.
Ecology - Natural Resources Management (Community-based management)
I worked on natural resources management modelling in STELLA. I developed a technical and scientific model to analyze soil, climate and biological conditions to explain how Bamboo ecosystem works and how people in Cundinamarca, Colombia could focus on a sustainable model for use and manage forestry resources.
Also, I worked on the seventh framework program named: Community-based management of Environmental Challenges in Latin America -COMET-LA-. The project built a learning arena with scientists, civil society and government to identify sustainable models for governance of natural resources in social-ecological systems located in a rural context from Colombia, México and Argentina.
I am interesting in research on Modelling of governance and Community-based management of natural resources.
I am interested in questions of method, and in the application of computational social models to a wide variety of national security questions (such as counterterrorism and counterinsurgency) as well as decision-making around complex natural resources such as water. My methods interest center on the use of qualitative social theory to inform the structure of computational social models, and the ways in which such models handle qualitative data. This raises questions around the nature of data and the ways in which computational social models convey information to decision-makers.
Research focuses on the coupled dynamics of human and natural systems, specifically in the context of forest dynamics. I utilize a variety of modeling and analysis techniques, including agent-based modeling, cellular automata, machine learning and various spatial statistics and GIS-related methods. I am currently involved in projects that investigate the anthropogenic and biological drivers behind native and invasive forest pathogens and insects.
I haven’t research now.
My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Displaying 10 of 162 results for "I Nikolic" clear search