Displaying 10 of 494 results for "Aad Kessler" clear search
Dr. Gravel-Miguel currently works as a Postdoctoral Research Scholar for the Institute of Human Origins at Arizona State University. She does research in Archaeology and focuses on the Upper Paleolithic of Southwest Europe. She currently works on projects ranging from cultural transmission to human-environment interactions in prehistory.
Archaeology, GIS, ABM, social networks, portable art, ornaments, data science
Research Assistant Professor at the Virginia Modeling, Analysis and Simulation Center at Old Dominion University. I work in the Storymodelers research group at VMASC where we use computational modeling approaches to try to understand complex social issues. Our main project is currently focused on modeling the dynamics of how host communities respond to the rapid influx of forced migrants.
I develop simulation tools for generating what-if scenarios for decision making. I predominantly use Agent-Based Modelling (ABM) technique as most of my simulations model complex systems. In some cases, I have extended existing tools with modifications to model the given system. Although the tools are meant for research purposes, I have followed industry friendly delivery mechanisms, such as unit-tests, automated builds and delivery on cloud platforms.
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
General Question:
Without Central Control is self organization possible?
Specific Case:
Considering the seemingly preplanned, densely aggregated communities of the prehistoric Puebloan Southwest, is it possible that without centralized authority (control), that patches of low-density communities dispersed in a bounded landscape could quickly self-organize and construct preplanned, highly organized, prehistoric villages/towns?
We can create custom research papers, essays, business reports, book or article reviews, research proposals, dissertations, IB extended essays, and many more types of papers. We help with papers for different complexity levels too, namely from high school to PhD papers. The writing is adapted to the chosen level so that our customers could safely claim the paper to be their own. In addition, we can create papers from scratch or can help you improve your draft at any writing stage by our custom paper writer
Hi. I’m Wolf. I’m the Argelander (Tenure-Track Assistant) Professor for Integrated System Modeling for Sustainability Transitions at the University of Bonn, Germany.
We reshape human-environment modeling to identify critical leverage points for sustainability transitions.
Cooperation at scale – in which large collectives of intelligent actors in complex environments seek ways to improve their joint well-being – is critical for a sustainable future, yet unresolved.
To move forward with this challenge, we develop a mathematical framework of collective learning, bridging ideas from complex systems science, multi-agent reinforcement learning, and social-ecological resilience.
Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.
My profound interest in networks convinced me to work in these subjects and start my master project on an application of social network analysis for detecting organized fraud in Automobile insurance, which helps to flag groups of fraudsters. The key point of this project is simply to find fraudulent rings, while the most of traditional methods have only taken opportunistic fraud into consideration. My duty in research is to design an algorithm for identifying cyclic components, then to be compared with theoretical ones. This project showed me how networks are used in the analysis of relations.
Displaying 10 of 494 results for "Aad Kessler" clear search