Community

Displaying 10 of 56 results learning clear search

Christopher Parrett Member since: Sun, Oct 20, 2019 at 02:06 PM Full Member

I am a lowly civil servant moonlighting as a PhD student interested in urban informatics, Smart Cities, artificial intelligence/machine learning, all-things geospatial and temporal, advanced technologies, agent-based modeling, and social complexity… and enthusiastically trying to find a combination thereof to form a disseration. Oh… and I would like to win the lottery.

  • Applied data science (machine/deep learning applications) and computational modeling (agent-based
    modeling) in U.S. Government
  • Geographic Information Systems and analysis of dense urban environments and complex terrain
  • Complexity theory and computational organizational design of distributed enterprise teams.
  • Human Capital Management and Talent Management policy development

Sedar Olmez Member since: Wed, Nov 06, 2019 at 10:25 AM Full Member

MSci in Computer Science, MSc in Data Analytics and Society

Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.

Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:

  • Multi-agent systems
  • Intelligent agents
  • Natural language processing
  • Artificial intelligence planning
  • Machine learning
  • Neural networks
  • Genetic programming
  • Geocomputation
  • Argumentation theory
  • Smart cities

Kenneth Aiello Member since: Thu, Jan 23, 2020 at 04:14 PM Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Roberto Gonzalez Member since: Thu, Apr 23, 2020 at 01:38 PM Full Member

Hello,

My name is Roberto and I am a graduate student at The Pennsylvania State University. I am in the “Information Sciences - Cybersecurity and Information Assurance program”, through which I discovered my interest in ABM. I am conducting my capstone research project on how to make ABM more effective in the disaster recovery planning process of IT companies. I am currently looking for interview candidates to conduct my research. If you or anyone you know have experience using ABM for disaster recovery planning in IT or tech, please reach out!

I learned about ABM through the Intelligent Agents course at Penn State, where we modeled everything from terrorist attacks to social relationships. I was immediately interested in ABM due to the potential and capabilities that it provides in so many areas. I hope to make ABM more popular in IT disaster recovery planning through my research, while learning more about ABM myself.

Cyber security
Agent-Based Modeling
Information Technology
Disaster Recovery

Peter Gerbrands Member since: Fri, May 08, 2020 at 08:08 PM Full Member

Peter Gerbrands is a Post-Doctoral Researcher at the of Utrecht University School of Economics, where is develops the data infrastructure for FIRMBACKBONE. He teaches data science courses: “Applied Data Analysis and Visualization” and “Introduction to R”. His research interests are agent-based simulations, social network analysis, complex systems, big data analysis, statistical learning, and computational social science. He applies his skills primarily for policy analysis, especially related to illicit financial flows, i.e. tax evasion, tax avoidance and money laundering and has published in Regulation & Governance, and EPJ Data Science. Prior to becoming an academic, Peter had a long career in IT consulting. In Fall 2023, he is a Visiting Research Scholar at SUNY Binghamton in NY.

agent-based simulations
social network analysis
complex systems
big data analysis
statistical learning
computational social science

Saeed Moradi Member since: Thu, Jun 04, 2020 at 07:39 PM

Dr. Saeed Moradi received his Ph.D. in Civil Engineering from Texas Tech University in Lubbock, Texas. Saeed has 11+ years of experience in research, policymaking, housing sector, construction management, and structural engineering. His career developed his enthusiasm for the enhancement of post-disaster recovery plans. Through his research on disaster recovery, community resilience, and human-centered complex systems, Saeed aims to bridge the gap between social sciences and civil/infrastructure engineering.

Community and Infrastructure Resilience
Disaster Recovery
Complex Systems Modeling
Agent-Based Modeling
System Dynamics
Machine Learning
Pattern Recognition
Data Mining
Spatial Analysis and Modeling
Construction Management
Building Information Modeling

LUIS ZULOAGA Member since: Sun, Aug 02, 2020 at 08:28 PM

MSc. Systems Engineering, National University of Engineering

Simulation, machine learning, systems modeling, big data.

Flavio Diniz Member since: Sun, Nov 15, 2020 at 02:10 PM

Eletronic Engineer with specialization in Computer Science and a passion for Artificial Intelligence, Simulation, Programming, and many other tech topcis . One life is really not enough to learn and experiment all cool things that are out there. Love also learning languages: Portuguese, English, French, Italian, and German.

  • Agent-based Modeling
  • Automated Planning and Distributed Problem Solving
  • Natural Language Processing
  • Machine Learning
  • Internet of Things and Cloud-based Distributed Architectures

Rifqi Jalu Pramudita Member since: Tue, Apr 20, 2021 at 12:04 AM Full Member

Bachelor, Operational Management, Indonesia University of Education, Master, Logistics and Supply Chain Management, Institut Teknologi Sepuluh Nopember

He is an experienced Lecturer with a demonstrated history of working in the education management industry. He was skilled in Agent-based Modeling and Simulation, Competency Assessing and Fundamental Supply Chain Management. Strong research background and analyst with a Master’s degree focused in Logistics and Supply Chain Management from Institut Teknologi Sepuluh Nopember Surabaya and Certified Supply Chain Analyst from ISCEA International.

My research focused on pricing strategy and its impact on Supply Chain (SC) using the Agent-Based Modeling and Simulation (ABMS) approach. Currently, I’m working on an ABMS model to analyze the impact of SC Coordination on SC performance when intelligent retailers may offer price discounts based on the market’s states using Q-learning algorithm.

Yevgeny Patarakin Member since: Tue, May 25, 2021 at 10:40 AM Full Member

Doctor of Sciences, Pedagogica, Moscow City Teacher Training University, Associate Professor, 2010

Moscow City University, Professor: Institute of Digital Education - http://digida.mgpu.ru

National Research University Higher School of Economics, Professor: Institute of Education / Department of Educational Programmes. Leading Expert: Institute of Education / Laboratory for Digital Transformation of Education - 2019 – present

2016 – present Leading Researcher at Moscow City University, Educational policies & educational practices

2018 – 2020 World Bank, Consultant. Children Learning to Code: Essential for 21st Century Human Capital
2011 - 2019 - Co-founder, chief community officer at WikiVote!

Educational network - Letopisi.org 2006 – present, Co-founder, chief community officer
Scientific project “Mobile and ubi-learning”, 2009 - 2011

ABM, wiki, NetLogo, StarLogo Nova, R, Collaboration

Displaying 10 of 56 results learning clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept