Displaying 10 of 66 results for "Ned Wellman" clear search
My interests are focused on the development of new methodologies capable of exploring the complex relations between time, space and human behavior. Simulation, game theory and spatial analysis are some of the techniques that I use to explore different research questions, from the relation between environment and culture to the evolution of warfare.
I’m also the project manager of Pandora, an open-source ABM platform specifically designed for executing large scale simulations in High-Performance Computing environments.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.
I have developed several agent-based and cellular automata applications combining agent-based modelling, geographical information systems and visualisation to understand the complex mechanisms of decision making in land use change and environmental stewardship in order to analyse:
• the role of pastoral agriculture in regional development,
• the tradeoffs between land use intensification and water quality,
• the adoption of land-based climate change mitigation practices, and
• the incorporation of cultural values into spatial futures or scenario modelling.
I am a developer for CoMSES Net as part of the Global Biosocial Complexity Initiative at Arizona State University. I work on improving model reuse, accessibility and discoverability through the development of the comses.net
website and the CoMSES bibliographic database (catalog.comses.net
). I also provide data analysis and software development advice on coupling models, version control, dependency management and data analysis to researchers and modelers.
My interests include model componentization, statistics, data analysis and improving model development and resuability practices.
Matteo Richiardi is an internationally recognised scholar in micro-simulation modelling (this includes dynamic microsimulations and agent-based modelling). His work on micro-simulations involves both methodological research on estimation and validation techniques, and applications to the analysis of distributional outcomes, the functioning of the labour market and welfare systems. He is Chief Editor of the International Journal of Microsimulation. Examples of his work are the two recent books “Elements of Agent-based Computational Economics”, published by Cambridge University Press (2016), and “The political economy of work security and flexibility: Italy in comparative perspective”, published by Policy Press (2012).
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
I’ve been building cyberinfrastructure and research software for computational social science and the study of complex adaptive systems at Arizona State University since 2006. Past and current projects include the Digital Archaeological Record, the Virtual Commons, the Social Ecological Systems Library, Synthesizing Knowledge of Past Environments (SKOPE), the Port of Mars, and CoMSES Net, where I serve as co-director and technical lead.
I also work to improve the state of open, transparent, reusable, and reproducible computational science as a Carpentries instructor and maintainer for the Plotting and Programming in Python and Good Enough Practices for Scientific Computing lessons, currently co-chair the Consortium of Scientific Software Registries and Repositories and Open Modeling Foundation Cyberinfrastructure Working Group, and serve on the DataCite Services and Technology Steering Group and CSDMS’s Basic Model Interface open source governance council.
My research interests include collective action, social ecological systems, large-scale software systems engineering, model componentization and coupling, and finding effective ways to promote and facilitate good software engineering practices for reusable, reproducible, and interoperable scientific computation.
My interests lie in the intersection of economics, networks, and computation. I am currently studying labour dynamics as a process where people flow throughout the economy by moving from one firm to another. I study these flows by looking at detailed data about employment histories of each individual and every firm in entire economies. Using this information, I construct networks of firms in order to map the roads that people take throughout their careers. This allows to study labour markets at an unprecedented fine-grained level of detail. I employ agent-based computing methods to understand how economic shocks and policies alter labour flows, which eventually translate into unemployment and other related problems.
Dr. Andreu Moreno Vendrell got the BS degree in Telecommunications Engineering in 1995 and the PhD in Telecommunications Engineering in 2000, both from Universitat Politècnica de Catalunya (Spain). Since 2005 his research is related to parallel and distributed computing. His main interests are focused on high performance parallel applications, automatic performance analysis and dynamic tuning, and agent based simulation systems. He has been involved in the definition of performance models for automatic and dynamic performance tuning and in the development of a new benchmark for agent based frameworks. He is lecturer at the Escola Universitària Salesiana de Sarrià, associated college of Universitat Autònoma de Barcelona. He is IEEE member.
Agent-based systems
Displaying 10 of 66 results for "Ned Wellman" clear search