Community

Displaying 10 of 107 results for "Martin Dribe" clear search

Victoria Ramenzoni Member since: Sat, Jul 23, 2016 at 04:06 AM

Ph.D.

Human behavioral ecology, marine ecology, cognitive sciences, decision making under uncertainty

Jacob Barhak Member since: Sat, Dec 17, 2016 at 05:42 AM

Ph.D.

Developing Disease Modeling Software - MIcro Simulation Tool (MIST). The Reference Model for Disease Progression is my main effort.

Bruno Bonté Member since: Mon, Feb 13, 2017 at 09:44 AM Full Member

PhD in Computer Science applied to Modelling and Simulation, University of Montpellier 2, Master degree in Computer Science applied to Artificial Intelligence and Decision in Paris 6 University of Pierre and Marie Curry

Master Degree

I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).

PhD

Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.

Post-Doc

From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).

G-EAU

Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.

My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.

Maria Havasova Member since: Fri, Feb 24, 2017 at 05:05 AM Full Member

Carsten Lemmen Member since: Mon, Mar 27, 2017 at 05:18 PM Full Member Reviewer

Dr. rer. nat.

I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.

Archaological modeling

I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.

Ecosystem modeling

I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.

Model coupling

I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.

Good scientific modeling practices

As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.

MV Eitzel Solera Member since: Sun, May 21, 2017 at 09:14 PM Full Member Reviewer

As a data scientist, I employ a variety of ecoinformatic tools to understand and improve the sustainability of complex social-ecological systems.  I also apply Science and Technology Studies lenses to my modeling processes in order to see potential ways to make social-ecological system management more just.  I prefer to work collaboratively with communities on modeling: teaching mapping and modeling skills, collaboratively building data representations and models, and analyzing and synthesizing community-held data as appropriate. At the same time, I look for ways to create space for qualitative and other forms of knowledge to reside alongside quantitative analysis, using mixed and integrative methods.

Recent projects include: 1) Studying Californian forest dynamics using Bayesian statistical models and object-based image analysis (datasets included forest inventories and historical aerial photographs); 2) Indigenous mapping and community-based modeling of agro-pastoral systems in rural Zimbabwe (methods included GPS/GIS, agent-based modeling and social network analysis); 3) Supporting Tribal science and environmental management on the Klamath River in California using historical aerial image analysis of land use/land cover change and social networks analysis of water quality management processes; 4) Bayesian statistical modeling of community-collected data on human uses of Marine Protected Areas in California.

Fei Wang Member since: Wed, Jun 21, 2017 at 08:46 AM

Dr.

Ecological modelling
Social Ecnomic/ecological complexity

Valentas Gruzauskas Member since: Sat, Oct 07, 2017 at 06:26 PM

PhDc

The main research area is operation research in logistics with a focus on logistic cluster development and innovative technology usage. Due to mathematical background, Gružauskas focuses on quantitative analysis by conducting simulations, stochastic and dynamic models and other analytical approaches to amplify the developed theories. Gružauskas also is working as a freelance data analyst with a focus on statistical analysis, web scraping and machine learning.

Kimberly Rogers Member since: Wed, Dec 06, 2017 at 03:56 AM Full Member

Environmental Engineering, PhD, Geological Sciences, Physical Geography, BSc, Music and Music Production, AASc

Dr. Kimberly G. Rogers studies the coupled human-natural processes shaping coastal environments. She obtained a B.Sc. in Geological Sciences from the University of Texas at Austin and began her graduate studies on Long Island at Stony Brook University’s School of Marine and Atmospheric Sciences. Rogers completed her Ph.D. at Vanderbilt University, where she specialized in nearshore and coastal sediment transport. She was a postdoctoral scholar and research associate at the Institute for Arctic and Alpine Research at the University of Colorado Boulder. In 2014, her foundation in the physical sciences was augmented by training in Environmental Anthropology at Indiana University Bloomington through an NSF Science, Engineering, and Education for Sustainability (SEES) Fellowship.

Rogers’s research is broadly interdisciplinary and examines evolving sediment dynamics at the land-sea boundary, principally within the rapidly developing river deltas of South Asia. As deltas are some of the most densely populated coastal regions on earth, she incorporates social science methods to examine how institutions — particularly those governing land use and built infrastructure — influence the flow of water and sediment in coastal areas. She integrates quantitative and qualitative approaches in her work, such as direct measurement and geochemical fingerprinting of sediment transport phenomena, agent-based modeling, institutional and geospatial analyses, and ethnographic survey techniques. Risk holder collaboration is an integral part of her research philosophy and she is committed to co-production and capacity building in her projects. Her work has gained recognition from policy influencers such as the World Bank, USAID, and the US Embassy Bangladesh and has been featured in popular media outlets such as Slate and Environmental Health Perspectives.

Displaying 10 of 107 results for "Martin Dribe" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept