Community

Displaying 10 of 45 results for "Francesco Scalone" clear search

Nick Roxburgh Member since: Fri, Nov 22, 2024 at 09:45 AM Full Member Reviewer

I am an agent-based modeller at the James Hutton Institute in Scotland. I specialise in large-scale modelling of social and socio-ecological systems, with a particular focus on simulating stressors and process that could give rise to transformational change. To date, my research has focused on food and agricultural systems, rural economies, and the WASH sector, with much of it informed by firsthand fieldwork in Africa, Asia, and Europe. I am also interested in leveraging open science, participatory research, quantitative ethnography, and grounded theory within modelling processes to collaboratively generate nuanced insights into individual behaviour and societal dynamics. I received the Open Science Award from the International Land Use Study Centre in 2023 for such work. I currently co-lead the European Social Simulation Association’s Special Interest Group on Modelling Transformative Change and I am the Associate Director of the Centre for Empirical Agent-Based Modelling at the James Hutton Institute.

Andreas Angourakis Member since: Wed, Feb 03, 2016 at 04:01 PM

PhD in Archaeology (University of Barcelona), Master Degree in Prehistorical Archaeology (Autonomous University of Barcelona), Degree in Sociology (Autonomous University of Barcelona), Degree in Humanities (Autonomous University of Barcelona)

I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.

My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).

As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).

  • Modeling human-plant interactions in the origin of agriculture: Multiparadigmatic modeling and simulation (ABM, System Dynamics) of the interaction between humans and plants during domestication.
  • Modeling cooperation in small-scale food economies: Agent-based modeling and simulation of the mechanisms involved in the emergence and disruption of cooperative behavior and institutions.
  • Models of resource metabolism: study of matter, information and energy flows in systems with living agents at all scales.
  • Modeling prehistoric hunting: modeling hunting at the scale of individuals to understand the immediate constraints of hunting as an ecological, economical and social activity.
  • Modeling the interaction between herding and farming in arid environments: Agent-based modeling and simulation of the mechanisms involved in the formation and change of agro-pastoral land use patterns (sedentary farming and mobile herding) in the arid Afro-Eurasia.
  • Models for games, games for models: Explore the intersection between modeling in Archaeology and game design, aiming to improve our understanding of the long-term implications of human behavior.

Nicholas Magliocca Member since: Wed, Mar 21, 2018 at 01:51 PM Full Member

My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.

Talal Alsulaiman Member since: Fri, Feb 27, 2015 at 04:10 AM

Bachelor of Science in Systems Engineering, Master of Science in Industrial Engineering, Master of Science in Financial Engineering

In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.

Anthony Di Fiore Member since: Fri, Aug 24, 2012 at 02:30 AM Full Member

Ph.D. Biological Anthropology

Primate evolutionary biologist and geneticist at the University of Texas at Austin

I conduct long-term behavioral and ecological field research on several species in the primate community of Amazonian Ecuador to investigate the ways in which ecological conditions (such as the abundance and distribution of food resources) and the strategies of conspecifics together shape primate behavior and social relationships and ultimately determine the kinds of societies we see primates living in. This is a crucial and central focus in evolutionary anthropology, as understanding the ways in which behavior and social systems are shaped by environmental pressures is a fundamental part of the discipline.

I complement my field studies with molecular genetic laboratory work and agent-based simulation modeling in order to address issues that are typically difficult to explore through observational studies alone, including questions about dispersal behavior, gene flow, mating patterns, population structure, and the fitness consequences of individual behavior. In collaboration with colleagues, I have also started using molecular techniques to investigate a number of broader questions concerning the evolutionary history, social systems, and ecological roles of various New World primates.

Kenneth Aiello Member since: Thu, Jan 23, 2020 at 04:14 PM Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Juan Ocampo Member since: Wed, Sep 11, 2019 at 07:52 PM Full Member Reviewer

PhD Candidate at Lund School of Economics and Management - Sweden, (2019) MSocSc Organizational Innovation and Entrepreneurship, Copenhagen Business School, (2016) MSc in Industrial Engineering, Universidad de los Andes, (2012) Industrial Engineering, Universidad de los Andes, Colombia

I am Colombian with passion for social impact. I believe that change starts at the individual, community, local and then global level. I have set my goal in making a better experience to whatever challenges I encounter and monetary systems and governance models is what concerns me at the time.

In my path to understanding and reflecting about these issues I have found my way through “Reflexive Modeling”. Models are just limited abstractions of reality and is part of our job as researchers to dig in the stories behind our models and learn to engage in a dialogue between both worlds.

Technology empowers us to act locally, autonomously and in decentralized ways and my research objective is to, in a global context, find ways to govern, communicate and scale the impact of alternative monetary models. This with a special focus on achieving a more inclusive and community owned financial system.

As a Ph.D. fellow for the Agenda 2030 Graduate School, I expect to identify challenges and conflicting elements in the sustainability agenda, contribute with new perspectives, and create solutions for the challenges ahead

Roger Cremades Member since: Wed, Apr 01, 2020 at 06:59 AM Full Member

PhD, Natural Sciences, University of Hamburg

Dr. Roger Cremades is a complex systems scientist and heterodox global change economist integrating human-Earth interactions across systems and scales into modular quantitative tools, e.g. connecting drought risks in cities with land use at the river basin scale. He is elected Council member of the Complex Systems Society (2022-2025) and previously served as co-Chair of the Development Team of the Finance and Economics Knowledge-Action Network of Future Earth, the largest global research programme in global change (2020-2022). Roger coordinated research and co-production projects above €1M, and published in top journal like PNAS, Nature Climate Change, and Nature Geoscience. As a scientific modeler in the Social and Ecological Sciences, Roger integrates complex systems concepts into integrated assessment models of global change, with a focus on cities.

The future of CoMSES.Net, in Roger’s vision, is to augment its projection into a hub for discussing state-of-the-art approaches on modeling for the Social and Ecological Sciences, e.g. via bi-annual webinars, so that the Model Library becomes a lighthouse from where all communities developing, sharing, using, and reusing agent-based and other computational models also find valuable discussions to advance their research, education, and computational practice.

Global change, human-Earth interactions, complex systems.

Allen Lee Member since: Thu, May 10, 2007 at 12:13 AM Full Member Reviewer

MSc Computer Science and Informatics, Indiana University - Bloomington, BSc Computer Science, Indiana University - Bloomington

I’ve been building cyberinfrastructure and research software for computational social science and the study of complex adaptive systems at Arizona State University since 2006. Past and current projects include the Digital Archaeological Record, the Virtual Commons, the Social Ecological Systems Library, Synthesizing Knowledge of Past Environments (SKOPE), the Port of Mars, and CoMSES Net, where I serve as co-director and technical lead.

I also work to improve the state of open, transparent, reusable, and reproducible computational science as a Carpentries instructor and maintainer for the Plotting and Programming in Python and Good Enough Practices for Scientific Computing lessons, currently co-chair the Consortium of Scientific Software Registries and Repositories and Open Modeling Foundation Cyberinfrastructure Working Group, and serve on the DataCite Services and Technology Steering Group and CSDMS’s Basic Model Interface open source governance council.

My research interests include collective action, social ecological systems, large-scale software systems engineering, model componentization and coupling, and finding effective ways to promote and facilitate good software engineering practices for reusable, reproducible, and interoperable scientific computation.

Andrew Gillreath-Brown Member since: Thu, Jul 25, 2019 at 03:42 PM Full Member

A.S., Pre-Engineering, Wallace State Community College, B.S., Mathematics and Natural Sciences, Freed-Hardeman University, B.A., Religious Studies, Freed-Hardeman University, B.A., Anthropology, Middle Tennessee State University, M.S., Applied Geography: Environmental Archaeology, University of North Texas

I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.

My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.

In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).

Displaying 10 of 45 results for "Francesco Scalone" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept