Displaying 10 of 47 results for "Francesc S Beltran" clear search
As a Master’s Thesis student, I am intended to apply Artificial Intelligence to an already existing model with the aim of making it more accurate.
Even though I do not have the focus point and the scope of the research clear yet, the road map is set to start from a very simple model to validate the technology and methodology used and then continue with more abitiuos projects.
I like the co-operation that I have found in this space and I think that I could both learn a lot from the community and add value with my novel trials and findings.
Of course I would be pleased to update the status of my project and I would try to help if I have the proper knowledge or different angle to other peers who seek for seconds opinions.
Thank you,
Francisco
I work as a Senior Researcher at the Centre for Modeling Social Systems (CMSS) at the Norwegian Research Centre (NORCE) sinde 2023. Before, I worked as an Expert Research Engineer at the CEA LIST Institute, Paris-Saclay University in France from 2013 to 2023. I hold a PhD in Artificial Intelligence degree from the Paul Sabatier University (France) and a PhD in Computer Engineering degree from the Ege University (Turkey).
I work in the field of complex adaptive systems, specializing in multi-agent systems, simulation, machine learning, collective intelligence, self-organization, and self-adaptation. I am interested in contributing to innovative projects and research in these domains.
My experience spans across multiple large-scale international research projects in areas such as green urban logistics, blockchain for nuclear applications, autonomous robotics systems and simulation of biological neural networks.
I am strongly interested in ecological modeling and complex system and truly enjoyed working with a variety of tools to uncover patterns in empirical data and explore their ecological and evolutionary consequences. My primary research is to conduct research in the field of ‘ecological complexity’, including the development of appropriate descriptive measure to quantify the structural, spatial and temporal complexity of ecosystem and the identification of the mechanism that generate this complexity, through modeling and field studies.
Currently investigated is how biological characteristics of invasive species (dispersal strategies and demographic processes) interact with abiotic variables and resource distribution to determine establishment success and spread in a complex heterogeneous environment (Individual based modelling integrated with GIS technologies).
As publically funded science has become increasingly complex, the policy and management literature has begun to focus more attention on how science is structured and organized. My research interests reside at the nexus of science and technology policy, organizational theory, and complexity theory—I am interested in how the management and organization of S&T research influences the implementation of policies and the emergence of organizational strategies and innovation. Although my research involves the use of multiple qualitative and quantitative methods, I rely heavily on agent based modeling and system dynamics approaches in addressing my research questions.
1987-1989: assistant professor at the Neuchâtel University (Switzerland)
1990-2001: full professor at the Neuchâtel University (Switzerland): artificial intelligence & software engineering
2001- : senior researcher at CIRAD in the unit “Gestion des Ressources et Environnement” (GREEN) and from 2021 “Savoirs ENvironnement Sociétés” (UMR SENS)
Former professor at the University of Neuchatel in Switzerland and now senior researcher at CIRAD in France, I am doing research on artificial intelligence since 1984. Having begun with logic programming, I naturally applied logics and its extensions (i.e. modal logics of various sorts) to specify agent behaviour. Since 1987, I moved both to embedded intelligence (using mobile robots) and multi-agent systems applied, in particular, to job-shop scheduling and complex system simulation and design. Since 2001, I exclusively work on modelling and simulation of socio-ecosystems in a multidisciplinary team on renewable resources management (GREEN). I am focusing on modelling complex systems in a multi-disciplinary (economist, agronomist, sociologists, geographers, etc.) and multi-actor (stakeholders, decision makers) setting. It includes:
- representing multiple points of view at various scales and levels on a complex socio-ecosystem, using ontologies and contexts
- representing the dynamics of such systems in a variety of formalisms (differential equations, automata, rule-based systems, cognitive models, etc.)
- mapping these representations into a simulation formalism (an extension of DEVS) for running experiments and prospective analysis.
This research is instantiated within a modelling and simulation platform called MIMOSA (http://mimosa.sourceforge.net). The current applications are the assessment of the sustainability of management transfer to local communities of the renewable ressources and the dynamics of agro-biodidversity through networked exchanges.
Furkan Gürsoy received the BS in Management Information Systems from Boğaziçi University, Turkey, and the MS in Data Science from İstanbul Şehir University, Turkey. He is currently a PhD Candidate at Boğaziçi University. He previously worked as an IS/IT Consultant and a Machine Learning Engineer with the industry for several years. He held a Visiting Researcher Position with IMT Atlantique, France, in 2020. His research interests include complex networks, machine learning, simulation, and broad data science.
network science, machine learning, simulation, data science.
Prof. Christian E. Vincenot is by nature an interdisciplinary researcher with broad scientific interests. He majored in Computer Science / Embedded Systems (i.e. IoT) at the Université Louis Pasteur (Strasbourg, France) while working professionally in the field of Computer Networking and Security. He then switched the focus of his work towards Computational Modelling, writing his doctoral dissertation on Hybrid Modelling in Ecology, and was awarded a PhD in Social Informatics by Kyoto University in 2011 under a scholarship by the Japanese Ministry of Research. He subsequently started a parallel line of research in Conservation Biology (esp. human-bat conflicts) under a postdoctoral fellowship of the Japanese Society for the Promotion of Science (JSPS) (2012-2014). This led him to create the Island Bat Research Group (www.batresearch.net), which he is still coordinating to this date. In 2014, he was appointed as the tenured Assistant Professor of the Biosphere Informatics Laboratory at Kyoto University. He also been occupying editorial roles for the journals PLOS ONE, Frontiers in Environmental Science, and Biology. In 2020, he created Ariana Technologies (www.ariana-tech.com), a start-up operating in the field of Data Science/Simulation and IoT for crisis management.
Prof. Vincenot’s main research interests lie in the theoretical development of Hybrid Mechanistic Simulation approaches based on Individual/Agent-Based Modeling and System Dynamics, and in their applications to a broad range of systems, with particular focus on Ecology.
Doctor and Magister in Informatics by the Girona University (Spain), Telematics Engineer and Systems Technologist by the Francisco José de Caldas University (Bogotá, Colombia), Specialist in Databases Management, and Specialist in Higher Education. Currently, associate professor and researcher at the Fundación Universitaria Konrad Lorenz (Bogotá, Colombia). Academic leader of the Konrad IA project (IA - Artificial Intelligence). Associated researcher by the science and technology Colombian ministry.
CoMSES.Net is a good community space to share knowledge regarding agent based and computational models that are built based upon a wide variety of contexts (social, political, educational, scientific, biological, etc.). Thus, the CoMSES.Net should be known in all regions around the world. Moreover, as I belong to the Spanish-speaking community, it would be very interesting to publicize what the network does in Spanish-speaking countries.
Research topics: Inmersive Technologies, Educational Technologies, Web Accessibility and Usability, Sematic Web, Artificial Intelligence.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
Displaying 10 of 47 results for "Francesc S Beltran" clear search