Displaying 10 of 102 results for "Emmanuel Mhike Hove" clear search
I am a geographer interested in exploring tourism system dynamics and assessing tourism’s role in environmental sustainability using agent-based modelling (ABM). My current work focus is on human complex systems interactions with the environment and on the application of tools (such as scenario analysis, network analysis and ABM) to explore topics systems adaptation, vulnerability and resilience to global change. I am also interested in looking into my PhD future research directions which pointed the potential of Big Data, social media and Volunteer Geographical Information to increase destination awareness.
I have extensive experience in GIS, quantitative and qualitative methods of research. My master thesis assessed the potential for automatic feature extraction from QuickBird imagery for municipal management purposes. During my PhD I have published and submitted several scientific papers in ISI indexed journals. I have a good research network in Portugal and I integrate an international research network on the topic “ABM meets tourism”. I am a collaborator in a recently awarded USA NCRCRD grant project “Using Agent Based Modelling to Understand and Enhance Rural Tourism Industry Collaboration” and applied for NSF funding with the project “Understanding and Enhancing the Resilience of Recreation and Tourism Dependent Communities in the Gulf”.
Department of Computational and Data Sciences
George Mason University
Fairfax, VA, USA
I use ABM to study organizations, leadership, employee behavior and performance, and the social/psychological theories addressing workplace behavior and outcomes.
I have also used ABM to explore mass violence, active shooters, and mass shootings, including the spread of mass violence and its antecedents.
I have a BS in Earth Sciences and a PhD in Resource and Environmental Economics. I have more than 25 years of experience doing research and teaching and advising students in systems thinking, scenario development, simulation, and ecological economics. Presently, I am an Associate Professor in the Department of Computational & Data Sciences at George Mason University, and a member of the Center for Social Complexity. I teach the introductory courses on Computational Social Sciences at both the undergraduate and graduate levels, as well as beginning and advanced courses in complex systems, modeling, and simulation. My current research focuses on the use of scenario development and integrated modeling as applied to social-ecological systems. My recent work has focused on applying these to issues related to climate change economics and policy, including new technologies for greenhouse gas removal and solar radiation management.
I have a backround in computer science, worked in natural resource management, and ended up with a PhD in Sustainability Sciences!
My interests are to explore aspects of sustainability, resilience, and adaptive management in social-ecological systems using agent-based models and other simulation models.
I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.
I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.
I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.
I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.
As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.
Jorge is a PhD candidate of System Design Engineering at the University of Waterloo. His research activities are focused on applying agent-based models on three major areas: 1) financial markets to study the self-regulation capability of artificial markets with interacting investors and credit rating agencies; 2) the efficiency of road networks when users have access to real-time information and are able to adjust their behavior to current conditions; 3) failure probability of nuclear waste containers due to microbial- and chemical-driven corrosion.
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
My profound interest in networks convinced me to work in these subjects and start my master project on an application of social network analysis for detecting organized fraud in Automobile insurance, which helps to flag groups of fraudsters. The key point of this project is simply to find fraudulent rings, while the most of traditional methods have only taken opportunistic fraud into consideration. My duty in research is to design an algorithm for identifying cyclic components, then to be compared with theoretical ones. This project showed me how networks are used in the analysis of relations.
Displaying 10 of 102 results for "Emmanuel Mhike Hove" clear search