Displaying 10 of 541 results for "Ian M Hamilton" clear search
I haven’t research now.
Gary Polhill did a degree in Artificial Intelligence and a PhD in Neural Networks before spending 18 months in industry as a professional programmer. Since 1997 he has been working at the Institute on agent-based modelling of human-natural systems, and has worked on various international and interdisciplinary projects using agent-based modelling to study agricultural systems, lifestyles, and transitions to more sustainable ways of living. In 2016, he was elected President of the European Social Simulation Association, and was The James Hutton Institute’s 2017 Science Challenge Leader on Developing Technical and Social Innovations that Support Sustainable and Resilient Communities.
He is a member of IEEE, a computer scientist, an Information Technologist, and a Research Lab Head at the Dig Connectivity Research Laboratory (DCRLab), Kampala, Uganda. My research broadly integrates and focuses on developing principled computationally and statistically efficient models and algorithms for various machine learning problems in Smart Agriculture, Ecological Informatics, Computer Vision, Applied AI, Cybersecurity and Privacy, and Smart Cities. I attained a Bachelor in Information Technology at the Faculty of Science & Computing, Ndejje University, Kampala, Uganda; a Master in Information Technology Engineering (Computer and Communication Networks); and PhD in Computer Science Universiti Brunei Darussalam, Brunei. He has received additional training from, among others, the National Institutes of Health, US Department of Health and Human Services, and the Bloomberg School of Public Health, USA. Hundreds of scholarly publications, including those in prestigious peer-reviewed journal articles, numerous IEEE International, non-IEEE Conference proceedings, book chapters, and books have been published. Reviewer/editorial support of over twelve (Scopus, Compendex (Elsevier Engineering Index), and WoS International Journals, including Expert Systems With Applications, Scientific Reports and Computers and Electronics in Agriculture. I served in several capacities, including being departmental support for Mathematics for Data Science, Advanced Topics in Computing, and Advanced Algorithms. Prior to this, I served as a community data officer at Pace-Uganda, a research associate at TechnoServe, a research assistant at PSI-Uganda, a research lead at the Socio-economic Data Centre (SEDC-Uganda) and ag. managing director at Asmaah Charity Organisation.
Computer Vision, Artificial Intelligence, Security and Privacy, Smart Agriculture / Digital Agriculture, Health Computing, Digital Image Processing,
Social Networks Analysis, Sustainable Computing, Ecological Informatics, Smart Computing
Scott Heckbert (PhD 2010) is the Principal Environmental Scientist at the Alberta Energy Regulator, and an Adjunct Professor at University of Alberta and University of Lethbridge, Canada. Scott’s area of specialization is combining agent-based models, GIS, and 3D visualization. These technologies are used as digital laboratories where scientists, decision makers, and stakeholders can interact for improved understanding of complex social-environmental systems.
Environmental impact, hydrology, land use change, digital twinning, experimental economics, GIS, 3D, agent-based models.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
S.R. Aurora, also known as Mai P. Trinh, is an Assistant Professor of Management at The University of Texas Rio Grande Valley. Her interdisciplinary work intersects leadership, complex systems science, education, technology, and inclusion. Her research harnesses technology to cultivate future leaders and helps people thrive in our volatile, uncertain, complex, and ambiguous (VUCA) high-tech world, aligning with four United Nations’ sustainable development goals: Quality education (#4), Gender equality (#5), Decent work and economic growth (#8), and Reduced inequalities (#10). She has published in top-tiered peer-reviewed journals such as The Leadership Quarterly and The Academy of Management Learning and Education and received multiple national and international awards for her research, teaching, and mentoring. Dr. Aurora earned her doctoral degree in Organizational Behavior from the Weatherhead School of Management at Case Western Reserve University in 2016.
Leader development, leading complex systems, agent-based modeling, experiential learning, innovations in online education
Farzaneh Davari is a social science researcher who has worked in many diverse fields, including agriculture, conflict, health, and human rights, just to name a few. Currently, she is a Ph.D. candidate in Computational Social Science, focusing on social-ecological complex systems and applying computational science and Agent-Based Modeling to understand resilience procedure through self-organizing and learning. Meanwhile, she is a designer and instructor of the online graduate level course of Decision-making in Complex Environments in Virginia Tech.
Social-ecological complex system, resilience-building, conflictual environment
My field of interests concerns two axes:
First, epistemology of computational modeling and simulation of complex systems. I am particularly interested in a sociological inquiry about social implication of knowledge derived from complex systems’ study.
Second, assessing the possibilities and limits of studying social complexity with complex systems tools, particularly, agent-based modeling and simulation.
Displaying 10 of 541 results for "Ian M Hamilton" clear search