Displaying 10 of 474 results for "Bin-Tzong Chi" clear search
My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.
Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.
To tackle the scientific challenges proposed by landscape dynamics and cooperation processes, I have developed a research methodology based on field work and companion modelling (ComMod) combined with the formalisation of the observed processes and agents based models.
This approach offers the possibility to understand : spatial, social, cultural and / or economic conditions that take place on territories, and to provide prospective scenarios.
These methods have been applied in various contexts: steep slope vineyards landscapes (2011), water resource management cooperation (2015), vegetation cover in dry climate (2017). The established research networks are still active through sustained collaborations and activities.
My technical expertise grew and evolved through investment in several workgroups: MAPS Team (Modelling Applied to Space Phenomena), OSGeo (president of the OSGeo’s French chapter between 2013 and 2016, member of the OSGeo-international chapter since 2015), various initiatives around modelling, exploration and sensibility analysis of spatial patterns behaviours, and more generally in Free Software communities.
I am interested in the socio-environmental conditions for the emergence of cooperation and mutual aid in social systems and mainly with regard to renewable resources. I consider in this context that Commons are a spatial manifestation of mutual aid.
From a technical point of view, I am very interested in the questions of model exploration (HPC), which led me to integrate the OpenMole community and to contribute to discussions about heuristic exploration.
Dr. Kimberly G. Rogers studies the coupled human-natural processes shaping coastal environments. She obtained a B.Sc. in Geological Sciences from the University of Texas at Austin and began her graduate studies on Long Island at Stony Brook University’s School of Marine and Atmospheric Sciences. Rogers completed her Ph.D. at Vanderbilt University, where she specialized in nearshore and coastal sediment transport. She was a postdoctoral scholar and research associate at the Institute for Arctic and Alpine Research at the University of Colorado Boulder. In 2014, her foundation in the physical sciences was augmented by training in Environmental Anthropology at Indiana University Bloomington through an NSF Science, Engineering, and Education for Sustainability (SEES) Fellowship.
Rogers’s research is broadly interdisciplinary and examines evolving sediment dynamics at the land-sea boundary, principally within the rapidly developing river deltas of South Asia. As deltas are some of the most densely populated coastal regions on earth, she incorporates social science methods to examine how institutions — particularly those governing land use and built infrastructure — influence the flow of water and sediment in coastal areas. She integrates quantitative and qualitative approaches in her work, such as direct measurement and geochemical fingerprinting of sediment transport phenomena, agent-based modeling, institutional and geospatial analyses, and ethnographic survey techniques. Risk holder collaboration is an integral part of her research philosophy and she is committed to co-production and capacity building in her projects. Her work has gained recognition from policy influencers such as the World Bank, USAID, and the US Embassy Bangladesh and has been featured in popular media outlets such as Slate and Environmental Health Perspectives.
Dr. Cheick Amed Diloma Gabriel Traore is a researcher specializing in modeling multi-agent systems. He earned his PhD from Cheikh Anta Diop University (UCAD) in Senegal. His doctoral research focused on the formalization and simulation of Sahelian transhumance as a complex adaptive system. Utilizing mathematical and computational techniques, he developed agent-based models to analyze the spatiotemporal dynamics of transhumant herds, taking into account factors such as herd behavior, environmental conditions, and socio-economic pressures.
To design the models for his dissertation, Dr. Traore conducted extensive fieldwork in Senegal. He collaborated with interdisciplinary teams to collect data on transhumant practices within the Sahelian ecosystem. With this data, he created a multi-objective optimization framework to model the movement decisions of transhumants and their herds. Additionally, he developed a real-time monitoring system for transhumant herds based on discrete mathematics. His doctoral research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).
Before pursuing his PhD, Dr. Traore obtained both a master’s and a bachelor’s degree in mathematics from Nazi Boni University in Burkina Faso. During his studies, he developed a rectangular grid for image processing and applied the Hough transform to detect discrete lines. His master’s and bachelor’s degrees were funded by the Burkinabe government.
Currently, Dr. Traore is an Assistant Professor at the Institute of Computer Engineering and Telecommunications at the Polytechnic School of Ouagadougou. In addition to his role in student training, he is working on integrating viability theory with agent-based modeling to address sustainable development challenges in rapidly changing and complex socio-economic systems. His research has been published in several renowned conferences and scientific journals, and he continues to actively contribute to the fields of complex systems modeling and image processing.
Networks Theory, Applied Microeconomics, Industrial Organization and Social Interactions.
PhD student in Computer Science at the University of Newcastle, Australia
My experience is diverse, with research in spatial analyses and GIS, ecosystem modeling, landscape ecology, database management, biogeographical relationships of birds and plants, species/habitat relationships, wildlife and pastoral livestock mobility, spectroscopy, cluster analysis, and telemetry techniques. Research projects are ongoing in Colorado, the contiguous US, Kenya, Mali, and Tibet.
Yiyu Wang is a PhD student in Center for Spatial Analysis and Policy (CSAP), at University of Leeds. Currently her research interests are the forward-looking simulation model of pedestrian evacuating behaviours especially in emergency situations incorporating Bayesian game theory within multi-agent systems, and their interactions with other social factors.
computer simulations of biological macroevolution; dynamics and evolution in social and systems, also memetics and macromemetics - evolution of culture
Displaying 10 of 474 results for "Bin-Tzong Chi" clear search