Displaying 8 of 28 results multi-agent clear search
1987-1989: assistant professor at the Neuchâtel University (Switzerland)
1990-2001: full professor at the Neuchâtel University (Switzerland): artificial intelligence & software engineering
2001- : senior researcher at CIRAD in the unit “Gestion des Ressources et Environnement” (GREEN) and from 2021 “Savoirs ENvironnement Sociétés” (UMR SENS)
Former professor at the University of Neuchatel in Switzerland and now senior researcher at CIRAD in France, I am doing research on artificial intelligence since 1984. Having begun with logic programming, I naturally applied logics and its extensions (i.e. modal logics of various sorts) to specify agent behaviour. Since 1987, I moved both to embedded intelligence (using mobile robots) and multi-agent systems applied, in particular, to job-shop scheduling and complex system simulation and design. Since 2001, I exclusively work on modelling and simulation of socio-ecosystems in a multidisciplinary team on renewable resources management (GREEN). I am focusing on modelling complex systems in a multi-disciplinary (economist, agronomist, sociologists, geographers, etc.) and multi-actor (stakeholders, decision makers) setting. It includes:
- representing multiple points of view at various scales and levels on a complex socio-ecosystem, using ontologies and contexts
- representing the dynamics of such systems in a variety of formalisms (differential equations, automata, rule-based systems, cognitive models, etc.)
- mapping these representations into a simulation formalism (an extension of DEVS) for running experiments and prospective analysis.
This research is instantiated within a modelling and simulation platform called MIMOSA (http://mimosa.sourceforge.net). The current applications are the assessment of the sustainability of management transfer to local communities of the renewable ressources and the dynamics of agro-biodidversity through networked exchanges.
Hi. I’m Wolf. I’m the Argelander (Tenure-Track Assistant) Professor for Integrated System Modeling for Sustainability Transitions at the University of Bonn, Germany.
We reshape human-environment modeling to identify critical leverage points for sustainability transitions.
Cooperation at scale – in which large collectives of intelligent actors in complex environments seek ways to improve their joint well-being – is critical for a sustainable future, yet unresolved.
To move forward with this challenge, we develop a mathematical framework of collective learning, bridging ideas from complex systems science, multi-agent reinforcement learning, and social-ecological resilience.
I am a modeler scientist at CIRAD. As member of the Green Research Unit, I contribute to promote the Companion Modeling approach (http://www.commod.org). Through the development of CORMAS, a Framework for Agent-Based Models (http://cormas.cirad.fr), I have been focusing on the development and the use of multi-agent simulations for renewable resource management issues. I have been based several years in Brazil, at the University of Brasilia and at the PUC-Rio University, until 2014. I developed models related to environmental management, such as breeding adaptation to drought in the Uruguay or as breeding and deforestation in the Amazon. I am currently based in Costa Rica, firstly at the University of Costa Rica working on adaptation of agriculture and livestock to Climate Changes, and now at CATIE, working on coffe rust.
Participatory modeling, including collective design of model and interactive simulation
Multi-agent systems, Cognitive Agent, GAMA
My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.
It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)
Dr. Mariam Kiran is a Research Scientist at LBNL, with roles at ESnet and Computational Research Division. Her current research focuses on deep reinforcement learning techniques and multi-agent applications to optimize control of system architectures such as HPC grids, high-speed networks and Cloud infrastructures.. Her work involves optimization of QoS, performance using parallelization algorithms and software engineering principles to solve complex data intensive problems such as large-scale complex decision-making. Over the years, she has been working with biologists, economists, social scientists, building tools and performing optimization of architectures for multiple problems in their domain.
Multi-agent Systems, Agent Based Modeling, Artificial Intelligence
Distributed computing modeling, multi-agent computing models, economic and financial models, healthcare chronic disease models
Displaying 8 of 28 results multi-agent clear search