Displaying 10 of 82 results for "Huw Vasey" clear search
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
I am an anthropologist from the Universidad Nacional de Colombia. I am interested in ethnomusicology, art, and complex systems, especially socio-ecological. I want to understand how cultural expressions and social rules are part of a more complex system and how they are intertwined with other non-human behaviors
I am interested in modeling socio-ecological systems. I am currently working on the implementation of a seed-exchange model for understanding the role of some kinship patterns (locality and seed heritage rules) in agrobiodiversity.
Doing research on how the flood insurance system in the UK should be structured in the future to make it resilient for environmental change.
My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and most recently the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed psychophysical experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.
Based on the philosophy of ‘understanding through creating’ I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
I study he role of biologically-based motivations in the formation of socio-political phenomena using agent-based modelling techniques. In particular I look at how behaviour inhibition and activation, as well as interpersonal attitudes can shape the emergence of complex polities.
As publically funded science has become increasingly complex, the policy and management literature has begun to focus more attention on how science is structured and organized. My research interests reside at the nexus of science and technology policy, organizational theory, and complexity theory—I am interested in how the management and organization of S&T research influences the implementation of policies and the emergence of organizational strategies and innovation. Although my research involves the use of multiple qualitative and quantitative methods, I rely heavily on agent based modeling and system dynamics approaches in addressing my research questions.
This paper investigates how collective action is affected when the interaction is driven by the underlying hierarchical structure of an organization, e.g., a company. The performance of collection action is measured as the rate of contribution to a public good, e.g., an organization’s objective.
Development and usage of demographic microsimulation tools and applications, in particular combining statistical modeling and social theory
Displaying 10 of 82 results for "Huw Vasey" clear search