Displaying 10 of 561 results for "Lee-Ann Sutherland" clear search
Peter Gerbrands is a Post-Doctoral Researcher at the of Utrecht University School of Economics, where is develops the data infrastructure for FIRMBACKBONE. He teaches data science courses: “Applied Data Analysis and Visualization” and “Introduction to R”. His research interests are agent-based simulations, social network analysis, complex systems, big data analysis, statistical learning, and computational social science. He applies his skills primarily for policy analysis, especially related to illicit financial flows, i.e. tax evasion, tax avoidance and money laundering and has published in Regulation & Governance, and EPJ Data Science. Prior to becoming an academic, Peter had a long career in IT consulting. In Fall 2023, he is a Visiting Research Scholar at SUNY Binghamton in NY.
agent-based simulations
social network analysis
complex systems
big data analysis
statistical learning
computational social science
My main interests are system dynamics and multi agent simulation used for support of business and marketing decisions (e.g. modeling of consumer markets) and in business education (e.g. development of open source business simulators). Amongst my other interests are applied marketing research, relationships between academia and industry, financial literacy, mind and concept mapping.
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
My initial training was in cadastre and geodesy (B.Eng from the Distrital University, UD, Colombia). After earning my Master’s degree in Geography (UPTC, Colombia) in 2003, I worked for the “José Benito Vives de Andreis” marine and coastal research institute (INVEMAR) and for the International Center for Tropical Agriculture (CIAT). Three years later, in 2006, I left Colombia to come to Canada, where I began a PhD in Geography with a specialization in modelling complex systems at Simon Fraser University (SFU), under the direction of Dr. Suzana Dragicevic (SAMLab). In my dissertation I examined the topic of spatial and temporal modelling of insect epidemics and their complex behaviours. After obtaining my PhD in 2011, I began postdoctoral studies at the University of British Columbia (2011) and the University of Victoria (2011-2013), where I worked on issues concerning the spatial and temporal relationships between changes in indirect indicators of biodiversity and climate change.
I am an Associate Professor in the Department of Geography at the University of Montreal. My research interests center around the incorporation of artificial intelligence and machine learning techniques into the development Agent-Based Models to solve complex socio-ecological problems in different kind of systems, such as urban, forest and wetland ecosystems.
The core of my research projects aim to learn more about spatial and temporal interactions and relationships driving changes in our world, by focusing on the multidisciplinary nature of geographical information science (GIScience) to investigate the relationships between ecological processes and resulting spatial patterns. I integrate spatial analysis and modeling approaches from geographic information science (GIScience) together with computational intelligence methods and complex systems approaches to provide insights into complex problems such as climate change, landscape ecology and forestry by explicitly representing phenomena in their geographic context.
Specialties: Agent-based modeling, GIScience, Complex socio-environmental systems, Forestry, Ecology
Mattressnextday stocks a LARGE assortment of beds and mattresses, probably the largest collection on-line today! In fact, Mattressnextday also offer over 80 different varieties of mattresses and over 50 styles of beds, bed-frames, and divans
My main research interests are the theoretical and experimental analysis of the dynamics of social networks, in relation to problems of cooperation and conflict.
My work centers on evaluating the adaptiva capacity and proposing strategies for managing forest under climate change in both temperate and tropical areas.
Development and usage of demographic microsimulation tools and applications, in particular combining statistical modeling and social theory
Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.
How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.
Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.
Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour
Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.
Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.
Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.
PhD student at Victoria University of Wellington.
Modelling social-ecological systems and governance of the commons. Currently working in the Python and Java ecosystems.
Displaying 10 of 561 results for "Lee-Ann Sutherland" clear search