Displaying 10 of 61 results model clear search
I currently work on an agent-based model on energy-efficient renovation decisions.
Utilizing physics, especially thermodynamics, to model human history.
Senior (Tenure-Track) Assistant Professor in Work and Organizational Psychology (WOP) at the Human Sciences Department of Verona University. My expertise lies in organizational behavior, individual differences and decision-making at work, and social dynamics in the applied psychology field. In the field of fundamental research my studies explore the role of individual antecedents (e.g., Personality traits, Risk attitudes, etc.) in relation to classic I/O models (e.g., Job Demands-Resources model, Effort-Reward model, etc.). My applied research focuses on the development of interventions and policies for enhancing decision-making, and in turn well-being and job performance. Finally, in industrial research, my research aims to better integrate cognitive and behavioral theories (e.g., Theory of Planned Behavior, Prospect theory, etc.) for designing predictive models – based on agents – of social and organizational behaviors.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
Ecology - Natural Resources Management (Community-based management)
I worked on natural resources management modelling in STELLA. I developed a technical and scientific model to analyze soil, climate and biological conditions to explain how Bamboo ecosystem works and how people in Cundinamarca, Colombia could focus on a sustainable model for use and manage forestry resources.
Also, I worked on the seventh framework program named: Community-based management of Environmental Challenges in Latin America -COMET-LA-. The project built a learning arena with scientists, civil society and government to identify sustainable models for governance of natural resources in social-ecological systems located in a rural context from Colombia, México and Argentina.
I am interesting in research on Modelling of governance and Community-based management of natural resources.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Ms. Stringfellow is a PhD candidate whose goal is to identify ways to build and leverage the natural support systems of people who are experiencing problems related to their illicit drug use. Her current interest is in how these support systems operate in small towns with limited formal resources for quitting. To that end, she recently began conducting in-depth qualitative interviews for her dissertation in a semi-rural county in eastern Missouri. These interviews will be used to build an agent-based model, a type of dynamic simulation modeling that can be used to represent heterogeneous actors with multiple goals and perceptions. As a research assistant and dissertation fellow with the Social System Design Lab, she has also been trained in system dynamics, an aggregate-level dynamic simulation modeling method.
Prior to joining the PhD program, she worked as a research associate at the Boston Health Care for the Homeless Program from 2008-2012. BHCHP is an exemplar model of providing patient-centered care for people who have experienced homelessness. There, she gained significant experience in managing research projects, collecting qualitative and quantitative data, and program evaluation. She earned her MSW from the University of Michigan in 2007, with a focus on policy and evaluation in community and social systems, and a BA in sociology in 2005, also at the University of Michigan. Ms. Stringfellow was born and raised in a small town in Michigan.
I am a developer for CoMSES Net as part of the Global Biosocial Complexity Initiative at Arizona State University. I work on improving model reuse, accessibility and discoverability through the development of the comses.net
website and the CoMSES bibliographic database (catalog.comses.net
). I also provide data analysis and software development advice on coupling models, version control, dependency management and data analysis to researchers and modelers.
My interests include model componentization, statistics, data analysis and improving model development and resuability practices.
I am a Postdoctoral Associate in the Ecology, Evolution and Behavior department at the University of Minnesota. My research involves using agent-based models combined with lab and field research to test a broad range of hypotheses in biology. I am currently developing an agent-based model of animal cell systems to investigate the epigenetic mechanisms that influence cell behavior. For my PhD work, I created a model, B3GET, which simulates the evolution of virtual primates to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I have also conducted fieldwork to inform the modeled behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!
I specialize in creating agent-based models of biological systems for research and education in genetics, evolution, demography, ecology, and behavior.
I am a Ph.D. candidate in Computational Social Science (CSS) program at George Mason (GMU). I hold a MAIS from GMU and a Bachelor of Economics from the University of Tasmania. My research interests are the application of ABMs, network analysis, and machine learning to financial markets. My email address and website is [email protected] and www.aussiecas.com
I am interested in using agent-based model to understand the behavior of financial markets
Displaying 10 of 61 results model clear search