Community

Displaying 10 of 20 results for "Ulrike Hahn" clear search

Alessandro Sciullo Member since: Mon, Nov 11, 2013 at 06:20 PM

Political Science

Current main research interests are concerned on diffusion of ICT among social actors of territorial systems: citizens(individuals and households), enterprises and governmental bodies. Most used methodological tools are , so far, multivariate statistics and Social Network Analysis.
I’d like to apply an ABM approach in the context of my PhD research project, aimed to observe the different modes of collaboration among universities and enterprises and tehir different effectiveness in terms of creation and spread of new knowledge.

Christopher Parrett Member since: Sun, Oct 20, 2019 at 02:06 PM Full Member

I am a lowly civil servant moonlighting as a PhD student interested in urban informatics, Smart Cities, artificial intelligence/machine learning, all-things geospatial and temporal, advanced technologies, agent-based modeling, and social complexity… and enthusiastically trying to find a combination thereof to form a disseration. Oh… and I would like to win the lottery.

  • Applied data science (machine/deep learning applications) and computational modeling (agent-based
    modeling) in U.S. Government
  • Geographic Information Systems and analysis of dense urban environments and complex terrain
  • Complexity theory and computational organizational design of distributed enterprise teams.
  • Human Capital Management and Talent Management policy development

Peer-Olaf Siebers Member since: Fri, Feb 15, 2019 at 04:20 PM Full Member

I am an Assistant Professor at the School of Computer Science, University of Nottingham, UK.

My main research interest is the application of computer simulation to study human-centric complex adaptive systems. I am a strong advocate of Object Oriented Agent-Based Social Simulation. This is a novel and highly interdisciplinary research field, involving disciplines like Social Science, Economics, Psychology, Operations Research, Geography, and Computer Science. My current research focusses on Urban Sustainability and I am a co-investigator in several related projects and a member of the university’s “Sustainable and Resilient Cities” Research Priority Area management team.

Francisco Rodes Member since: Wed, Jan 31, 2018 at 12:52 PM

Bachelor's Degree in Industrial Engineering, Master's Degree in Industrial Engineering and Management

As a Master’s Thesis student, I am intended to apply Artificial Intelligence to an already existing model with the aim of making it more accurate.

Even though I do not have the focus point and the scope of the research clear yet, the road map is set to start from a very simple model to validate the technology and methodology used and then continue with more abitiuos projects.

I like the co-operation that I have found in this space and I think that I could both learn a lot from the community and add value with my novel trials and findings.

Of course I would be pleased to update the status of my project and I would try to help if I have the proper knowledge or different angle to other peers who seek for seconds opinions.

Thank you,
Francisco

Roger Cremades Member since: Wed, Apr 01, 2020 at 06:59 AM Full Member

PhD, Natural Sciences, University of Hamburg

Dr. Roger Cremades is a complex systems scientist and heterodox global change economist integrating human-Earth interactions across systems and scales into modular quantitative tools, e.g. connecting drought risks in cities with land use at the river basin scale. He is elected Council member of the Complex Systems Society (2022-2025) and previously served as co-Chair of the Development Team of the Finance and Economics Knowledge-Action Network of Future Earth, the largest global research programme in global change (2020-2022). Roger coordinated research and co-production projects above €1M, and published in top journal like PNAS, Nature Climate Change, and Nature Geoscience. As a scientific modeler in the Social and Ecological Sciences, Roger integrates complex systems concepts into integrated assessment models of global change, with a focus on cities.

The future of CoMSES.Net, in Roger’s vision, is to augment its projection into a hub for discussing state-of-the-art approaches on modeling for the Social and Ecological Sciences, e.g. via bi-annual webinars, so that the Model Library becomes a lighthouse from where all communities developing, sharing, using, and reusing agent-based and other computational models also find valuable discussions to advance their research, education, and computational practice.

Global change, human-Earth interactions, complex systems.

William Rand Member since: Wed, Oct 24, 2007 at 05:11 PM Full Member

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

Xiaotian Wang Member since: Fri, Mar 28, 2014 at 02:23 AM

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Volker Grimm Member since: Wed, Jul 18, 2007 at 11:13 AM Full Member

Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.

How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.

Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.

Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour

Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.

Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.

Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.

Carsten Lemmen Member since: Mon, Mar 27, 2017 at 05:18 PM Full Member Reviewer

Dr. rer. nat.

I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.

Archaological modeling

I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.

Ecosystem modeling

I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.

Model coupling

I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.

Good scientific modeling practices

As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.

David Earnest Member since: Sat, Mar 13, 2010 at 03:46 PM Full Member

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Displaying 10 of 20 results for "Ulrike Hahn" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept