Displaying 10 of 278 results for "J A Cuesta" clear search
while workplace is a one-time buy and does no longer offer freebies with it. although as it is a one-time buy, making it less complicated to work with and simpler to setup up. there may be no need for ordinary payments and you could use the productivity application as according to your need with any of the app that is covered with the software. Microsoft workplace includes all of the top class applications and can be used on any tool, starting from home windows desktops to Mac ebook Laptops and Smartphones and drugs with office.com/setup
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
I received a Ph.D. in Economics at the University of Namur (Belgium) in June 2012 with a thesis titled “Essays in Information Aggregation and Political Economics”.
After two years at the Research Center for Educational and Network Studies (Recens) of the Hungarian Academy of Sciences, I joined the Department of Economics “Marco Biagi” of the University of Modena and Reggio Emilia in January 2015 and then the Department of Agricultural and Food Sciences of the University of Bologna.
I am currently a Lecturer in Financial Computing at the Department Computer Science (Financial Computing and Analytics group) - University College London. Moreover I am an affiliated researcher of the DYNAMETS - Dynamic Systems Analysis for Economic Theory and Society research group and an affiliate member of the Namur Center for Complex Systems (Naxys).
My research interests concern the computational study of financial markets (microstructure, systemic properties and behavioral bias), of social Interactions on complex networks (theory and experiments), the evolution of cooperation in networks (theory and experiments) and the study of companies strategies in the digital economy.
Alma Mater: FT Ranked No. 10 Business Economics school.
Ranked No 1 in an engineering mathematics national level test.
Ranked No 1 in an analytics program at IIT Bombay.
B.E. Mechanical Engineering.
MTech 1st year Modelling and Simulation.
PhD 1st year Strategy Simulation at The University of Texas at Dallas.
Tuition scholarships at the Santa Fe Institute.
GMAT 730
5 years of operations research work experience.
Published and presented a poster at the The Operational Research Society, UK Annual Conference 2021 integrating strategy and applied math. Took on and resolved a longstanding problem.
Solo authored leadership article in the Analytics magazine Nov/Dec 2021 issue from INFORMS.
Solo authored theoretical optimization abstract at the ICORES 2022 Conference.
Authoring the black-tie, board room manual - The Change Management Series Volume 1 Kindle edition on Amazon March, 2022.
I am a participant at the Financial Modeling World Cup 2022.
Build spiders for scraping web data.
Agent-based computer simulation in strategy, the resource-based view in strategy, agency theory and top & middle management incentives, organizational economics, algorithmic game theory, financial friction, financial econometrics.
Moira Zellner’s academic background lies at the intersection of Urban and Regional Planning, Environmental Science, and Complexity. She has served as Principal Investigator and Co-Investigator in interdisciplinary projects examining how specific policy, technological and behavioral factors influence the emergence and impacts of a range of complex socio-ecological systems problems, where interaction effects make responsibilities, burdens, and future pathways unclear. Her research also examines how participatory complex systems modeling with stakeholders and decision-makers can support collaborative policy exploration, social learning, and system-wide transformation. Moira has taught a variety of courses and workshops on complexity-based modeling of socio-ecological systems, for training of researchers, practitioners, and decision-makers in the US and abroad. She has served the academic community spanning across the social and natural sciences, as reviewer of journals and grants and as a member of various scientific organizations. She is dedicated to serving the public through her engaged research and activism.
Applications of agent-based modeling to urban and environmental planning
Participatory modeling
I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.
You can keep up with my work at my webpage: https://kitcmartin.com
Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.
I studied Molecular Biology and Genetics at Istanbul Technical University. During my undergraduate studies I became interested in the field of Ecology and Evolution and did internships on animal behaviour in Switzerland and Ireland. I then went on to pursue a 2-year research Master’s in Evolutionary Biology (MEME) funded by the European Union. I worked on projects using computer simulations to investigate evolution of social complexity and human cooperation. I also did behavioural economics experiments on how children learn social norms by copying others. After my Master’s, I pursued my dream of doing fieldwork and investigating human societies. I did my PhD at UCL, researching cultural evolution and behavioural adaptations in Pygmy hunter-gatherers in the Congo. During my PhD, I was part of an inter-disciplinary Hunter-Gatherer Resilience team funded by the Leverhulme Trust. I obtained a postdoctoral research fellowship from British Academy after my PhD. I am currently working as a British Academy research fellow and lecturer in Evolutionary Anthropology and Evolutionary Medicine at UCL.
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
I am an agent-based simulation modeler and social scientist living near Cambridge, UK.
In recent years, I have developed supply chain models for Durham University (Department of Anthropology), epidemiological models for the Covid-19 pandemic, and agent-based land-use models with Geography PhD students at Cambridge University.
Previously, I spent three years at Ludwig-Maximillians University, Munich, working on Human-Environment Relations and Sustainability, and over two and a half years at Surrey University, working on Innovation with Nigel Gilbert in the Centre for Research in Social Simulation (CRESS). The project at Surrey resulted in a book in 2014, “Simulating Innovation: Computer-based Tools for Rethinking Innovation”. My PhD topic, modeling human agents who energise or de-energise each other in social interactions, drew upon the work of sociologist Randall Collins. My multi-disciplinary background includes degrees in Operational Research (MSc) and Philosophy (BA/MA).
I got hooked on agent-based modeling and complexity science some time around 2000, via the work of Brian Arthur, Stuart Kauffman, Robert Axelrod and Duncan Watts (no relation!).
As an agent-based modeler, I specialize in NetLogo. For data analysis, I use Excel/VBA, and R, and occasionally Python 3, and Octave / MatLab.
My recent interests include:
* conflict and the emergence of dominant groups (in collaboration with S. M. Amadae, University of Helsinki);
* simulating innovation / novelty, context-dependency, and the Frame Problem.
When not working on simulations, I’m probably talking Philosophy with one of the research seminars based in Cambridge. I have a particular interests when these meet my agent-based modeling interests, including:
* Social Epistemology / Collective Intelligence;
* Phenomenology / Frame Problem / Context / Post-Heideggerian A.I.;
* History of Cybernetics & Society.
If you’re based near Cambridge and have an idea for a modeling project, then, for the cost of a coffee / beer, I’m always willing to offer advice.
PhD in Physics
One year postdoctoral position at the Institute of Physics at the University of Puebla, Mexico
Two year postdoctoral position at the Institute of Physics, University of Mexico, Mexico.
Working since 2007 as a professor and researcher at the University of Mexico City, Mexico.
Complex systems
Displaying 10 of 278 results for "J A Cuesta" clear search