Displaying 10 of 247 results for "Oto Hudec" clear search
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.
I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.
In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.
I am an Assistant Professor at the School of Computer Science, University of Nottingham, UK.
My main research interest is the application of computer simulation to study human-centric complex adaptive systems. I am a strong advocate of Object Oriented Agent-Based Social Simulation. This is a novel and highly interdisciplinary research field, involving disciplines like Social Science, Economics, Psychology, Operations Research, Geography, and Computer Science. My current research focusses on Urban Sustainability and I am a co-investigator in several related projects and a member of the university’s “Sustainable and Resilient Cities” Research Priority Area management team.
Postdoctoral researcher at Institute of Economics, Polish Academy of Sciences and in Macroprudential Research Division at National Bank of Poland. She graduated in Mathematics (Jagiellonian University, Poland) and in Economics (University of Alcala, Spain). In 2017 she obtained Fulbright Advanced Research Award. In the United States, she carried out research on systemic risk and complex systems. Her doctoral dissertation was about the measurement and modeling of systemic risk using simulation methods and complex systems approach (the results to be published by Palgrave Macmillan US). Previously, she gained experience on agent-based modeling while working with Juan Luis Santos on the European Commission FP 7 MOSIPS project (http://www.mosips.eu/).
Mathematics, complex systems, financial modeling, agent-based modeling, econometrics, macroprudential policies, systemic risk, cental banking
Interested in unlocking solutions to housing problems.
urban simulations, housing
Leonardo Grando is a Ph.D. Student at the University of Campinas (UNICAMP) in Brazil. I am interested in complex systems, agent-based simulation, artificial intelligence, the Internet of Things, programming, and machine learning tools. I have expertise in Netlogo, Python, R, Latex, SQL, and Linux tools.
My Ph.D. work project is an IoT devices (UAVs) swarm agent-based modeling simulation (ABMS) aiming the perpetual flight. The workflow is Netlogo to ABMS simulate, Python and R to data analysis, and I use Latex for my thesis writing.
I live in Salento, a small land located between two seas in Southeastern Italy. I work as an educator in an adult school. My educational background includes a degree in Life Sciences. During my post-graduate training, I was involved in researching the genetic and molecular responses of cells to environmental and genomic stresses. Currently, I am interested in exploring theoretical biology and complex adaptive systems through agent-based modelling.
Artificial Life, Adaptive Cognition, Evolvability
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
Amineh Ghorbani is an assistant professor at the Engineering Systems and Services Department, Delft University of Technology, the Netherlands. She is also an affiliated member of the “Institutions for Collective Action” at Utrecht University. She obtained her M.Sc. in Computer Science (Artificial intelligence) from University of Tehran (Iran) (2009, honours) and her PhD from Delft University of Technology (2013, cum laude).
During her PhD, Amineh developed a meta-model for agent-based modelling, called MAIA, which describes various concepts and relations in a socio-technical system. This modelling perspective helped her develop a modelling paradigm that she refers to as institutional modelling.
Her current area of research is understanding the emergence and dynamics of institutions (set of rule organizing human society) using modelling. She is interested in how bottom-up collective action emerges and how institutions emergence and change within communities.
collective action
institutional emergence
evolution of institutions
community energy systems
Displaying 10 of 247 results for "Oto Hudec" clear search