Displaying 10 of 247 results for "Oto Hudec" clear search
As a data scientist, I employ a variety of ecoinformatic tools to understand and improve the sustainability of complex social-ecological systems. I also apply Science and Technology Studies lenses to my modeling processes in order to see potential ways to make social-ecological system management more just. I prefer to work collaboratively with communities on modeling: teaching mapping and modeling skills, collaboratively building data representations and models, and analyzing and synthesizing community-held data as appropriate. At the same time, I look for ways to create space for qualitative and other forms of knowledge to reside alongside quantitative analysis, using mixed and integrative methods.
Recent projects include: 1) Studying Californian forest dynamics using Bayesian statistical models and object-based image analysis (datasets included forest inventories and historical aerial photographs); 2) Indigenous mapping and community-based modeling of agro-pastoral systems in rural Zimbabwe (methods included GPS/GIS, agent-based modeling and social network analysis); 3) Supporting Tribal science and environmental management on the Klamath River in California using historical aerial image analysis of land use/land cover change and social networks analysis of water quality management processes; 4) Bayesian statistical modeling of community-collected data on human uses of Marine Protected Areas in California.
Integrating social and natural science to study coupled human-natural systems, and particularly the interactions of society with the physical environment under conditions of environmental stress.
Applications of agent-based modeling and complexity theory to real-world problems. I am particular interested in stigmergic polyagents, their relation to the path integral formalization of quantum physics, and their application to combinatorially explosive problems, but also work extensively in modeling social systems.
Jorge is a PhD candidate of System Design Engineering at the University of Waterloo. His research activities are focused on applying agent-based models on three major areas: 1) financial markets to study the self-regulation capability of artificial markets with interacting investors and credit rating agencies; 2) the efficiency of road networks when users have access to real-time information and are able to adjust their behavior to current conditions; 3) failure probability of nuclear waste containers due to microbial- and chemical-driven corrosion.
IRPact - An integrated agent based modeling approach in innovation diffusion
Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.
I’ve been building cyberinfrastructure and research software for computational social science and the study of complex adaptive systems at Arizona State University since 2006. Past and current projects include the Digital Archaeological Record, the Virtual Commons, the Social Ecological Systems Library, Synthesizing Knowledge of Past Environments (SKOPE), the Port of Mars, and CoMSES Net, where I serve as co-director and technical lead.
I also work to improve the state of open, transparent, reusable, and reproducible computational science as a Carpentries instructor and maintainer for the Plotting and Programming in Python and Good Enough Practices for Scientific Computing lessons, currently co-chair the Consortium of Scientific Software Registries and Repositories and Open Modeling Foundation Cyberinfrastructure Working Group, and serve on the DataCite Services and Technology Steering Group and CSDMS’s Basic Model Interface open source governance council.
My research interests include collective action, social ecological systems, large-scale software systems engineering, model componentization and coupling, and finding effective ways to promote and facilitate good software engineering practices for reusable, reproducible, and interoperable scientific computation.
Topics:
Behavioural aspects of environmental problems: Use of evolutionary approaches to investigate how people react to environmental policy.
Resource scarcity
Climate-economic Models: Understand how economic agents think and decide about climate change and climate protection
Sustainable Development
Methods:
Agent-Based-Modeling
Genetic algorithms
Evolutionary economics
Behavioural economics
Ecological economics
Complexity Theory
The main research area is operation research in logistics with a focus on logistic cluster development and innovative technology usage. Due to mathematical background, Gružauskas focuses on quantitative analysis by conducting simulations, stochastic and dynamic models and other analytical approaches to amplify the developed theories. Gružauskas also is working as a freelance data analyst with a focus on statistical analysis, web scraping and machine learning.
Interested in learning how to accurately model social power, diffusion of ideas, social exchange
My research examines the most effective and efficient policies for renewable energy development using an approach that integrates input-output analysis, life cycle analysis, econometric, and agent-based modelling to estimate the impacts of the policies to economic, emission, extracted materials, renewable energy capacity and social acceptance.
Displaying 10 of 247 results for "Oto Hudec" clear search