Displaying 6 of 106 results for "Martin Loidl" clear search
Using agent based models to look at ecosystem-based or integrated management of oceans and coastal zones
Aquatic ecology, Socio-ecological fisheries systems
Modelling of socio-ecological systems and management of common property resources in artisanal fisheries. Population dynamics of coastal marine invertebrates exploited by artisanal fisheries.
Primate evolutionary biologist and geneticist at the University of Texas at Austin
I conduct long-term behavioral and ecological field research on several species in the primate community of Amazonian Ecuador to investigate the ways in which ecological conditions (such as the abundance and distribution of food resources) and the strategies of conspecifics together shape primate behavior and social relationships and ultimately determine the kinds of societies we see primates living in. This is a crucial and central focus in evolutionary anthropology, as understanding the ways in which behavior and social systems are shaped by environmental pressures is a fundamental part of the discipline.
I complement my field studies with molecular genetic laboratory work and agent-based simulation modeling in order to address issues that are typically difficult to explore through observational studies alone, including questions about dispersal behavior, gene flow, mating patterns, population structure, and the fitness consequences of individual behavior. In collaboration with colleagues, I have also started using molecular techniques to investigate a number of broader questions concerning the evolutionary history, social systems, and ecological roles of various New World primates.
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Displaying 6 of 106 results for "Martin Loidl" clear search