Displaying 3 of 3 results ethics clear search
Dr. Aaron Bramson is principal investigator of the AI Strategy Center of GA technologies in Tokyo, Japan, as well as an Affiliate Researcher in the Department of General Economics of Ghent University in Belgium. His research specialty is complexity science, especially methodologies for modeling complex systems. Research topics span across disciplines: measures of polarization and diversity, belief measure interoperability, integrating geospatial and network analyses for measuring walkability and neighborhood identification, and myriad applications in artificial intelligence and data visualization. He received his Ph.D. from the University of Michigan in a joint program with the departments of Political Science and Philosophy as well as an M.S. in Mathematics from Northeastern University.
Complex systems, agent-based modeling, social simulation, computational models, network models, network theory, methodology, philosophy of science, ontology, epistemology, ethics, artificial intelligence, big data analysis, geospatial data analysis,
Arpan Jani received his PhD in Business Administration from the University of Minnesota in 2005. He is currently an Associate Professor in the Department of Computer Science and Information Systems at the University of Wisconsin – River Falls. His current research interests include agent-based modeling, information systems and decision support, behavioral ethics, and judgment & decision making under conditions of risk and uncertainty.
agent-based modeling; behavioral ethics; information systems and decision support; project management; judgment & decision making under conditions of risk and uncertainty.
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.