Universitat Autònoma de Barcelona
Professional homepagehttps://portalrecerca.uab.cat/en/persons/anna-barbara-sikora-3
ORCID more infohttps://orcid.org/0000-0003-0090-4109
GitHub more infoNo associated GitHub account.
Anna Sikora is an Associate Professor in the Computer Architecture and Operating System Department at Autonomous University of Barcelona (UAB).
She got the BS degree in computer science in 1999 from Technical University of Wroclaw (Poland). She got the MSc in computer science in 2001 and in 2004 the PhD in computer science, both from Autonomous University of Barcelona (Spain).
Since 1999 her investigation is related to parallel and distributed computing. Her current main interests are focused on high performance parallel applications, performance models, automatic performance analysis and dynamic tuning. She has been involved in programming tools for automatic and dynamic performance tuning on cluster and Grid environments, as well as in exa-scale systems.
High performance parallel computing, parallel applications, performance models, automatic performance analysis, dynamic tuning. Performance tools for automatic and dynamic performance tuning on HPC systems. Agent-based modelling systems.
Agent-based modeling and simulation (ABMS) is a class of computational models for simulating the actions and interactions of autonomous agents with the goal of assessing their effects on a system as a whole. Several frameworks for generating parallel ABMS applications have been developed taking advantage of their common characteristics, but there is a lack of a general benchmark for comparing the performance of generated applications. We propose and design a benchmark that takes into consideration the most common characteristics of this type of applications and includes parameters for influencing their relevant performance aspects. We provide an initial implementation of the benchmark for RepastHPC one of the most popular parallel ABMS platforms, and we use it for comparing the applications generated by these platforms.
Agent-based modeling and simulation (ABMS) is a class of computational models for simulating the actions and interactions of autonomous agents with the goal of assessing their effects on a system as a whole. Several frameworks for generating parallel ABMS applications have been developed taking advantage of their common characteristics, but there is a lack of a general benchmark for comparing the performance of generated applications. We propose and design a benchmark that takes into consideration the most common characteristics of this type of applications and includes parameters for influencing their relevant performance aspects. We provide an initial implementation of the benchmark for FLAME one of the most popular parallel ABMS platforms, and we use it for comparing the applications generated by these platforms.
Agent-based modeling and simulation (ABMS) is a class of computational models for simulating the actions and interactions of autonomous agents with the goal of assessing their effects on a system as a whole. Several frameworks for generating parallel ABMS applications have been developed taking advantage of their common characteristics, but there is a lack of a general benchmark for comparing the performance of generated applications. We propose and design a benchmark that takes into consideration the most common characteristics of this type of applications and includes parameters for influencing their relevant performance aspects. We provide an initial implementation of the benchmark for DMASON parallel ABMS platform, and we use it for comparing the applications generated by these platforms.
Contact Tracing Repast HPC agent model
Under development.