C Michael Barton

Professor, School of Human Evolution & Social Change
Professor, School of Complex Adaptive Systems
Affiliate Professor, School of Earth and Space Exploration
Arizona State University

Research Interests

My interests center around long-term human ecology and landscape dynamics with ongoing projects in the Mediterranean (late Pleistocene through mid-Holocene) and recent work in the American Southwest (Holocene-Archaic). I’ve done fieldwork in Spain, Bosnia, and various locales in North America and have expertise in hunter/gatherer and early farming societies, geoarchaeology, lithic technology, and evolutionary theory, with an emphasis on human/environmental interaction, landscape dynamics, and techno-economic change.

Quantitative methods are critical to archaeological research, and socioecological sciences in general. They are an important focus of my research, especially emphasizing dynamic modeling, spatial technologies (including GIS and remote sensing), statistical analysis, and visualization. I am a member of the open source GRASS GIS international development team that is making cutting edge spatial technologies available to researchers and students around the world.

Peer reviewed CHIME ABM of Hurricane Evacuation

Sean Bergin C Michael Barton Joshua Watts Joshua Alland Rebecca Morss | Published Monday, October 18, 2021 | Last modified Tuesday, January 04, 2022

The Communicating Hazard Information in the Modern Environment (CHIME) agent-based model (ABM) is a Netlogo program that facilitates the analysis of information flow and protective decisions across space and time during hazardous weather events. CHIME ABM provides a platform for testing hypotheses about collective human responses to weather forecasts and information flow, using empirical data from historical hurricanes. The model uses real world geographical and hurricane data to set the boundaries of the simulation, and it uses historical hurricane forecast information from the National Hurricane Center to initiate forecast information flow to citizen agents in the model.

Peer reviewed Swidden Farming Version 2.0

C Michael Barton | Published Wednesday, June 12, 2013 | Last modified Wednesday, September 03, 2014

Model of shifting cultivation. All parameters can be controlled by the user or the model can be run in adaptive mode, in which agents innovate and select parameters.

Peer reviewed Hominin ecodynamics v.1

C Michael Barton | Published Saturday, October 01, 2011 | Last modified Friday, March 28, 2014

Biobehavioral interactions between two populations under different movement strategies.

Swidden farming by individual households

C Michael Barton | Published Sunday, April 27, 2008 | Last modified Saturday, April 27, 2013

Swidden Farming is designed to explore the dynamics of agricultural land management strategies.

The MML is a hybrid modeling environment that couples an agent-based model of small-holder agropastoral households and a cellular landscape evolution model that simulates changes in erosion/deposition, soils, and vegetation.

This model represents technological and ecological behaviors of mobile hunter-gatherers, in a variable environment, as they produce, use, and discard chipped stone artifacts. The results can be analyzed and compared with archaeological sites.

Hominin Ecodynamics v.1.1 (update for perception and interaction)

C Michael Barton | Published Wednesday, August 15, 2012 | Last modified Saturday, April 27, 2013

Models land-use, perception, and biocultural interactions between two forager populations.

Hominin ecodynamics v.2

C Michael Barton | Published Monday, September 19, 2011 | Last modified Friday, March 28, 2014

Simulates biobehavioral interactions between 2 populations of hominins.

Diet breadth model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Wednesday, November 26, 2008 | Last modified Thursday, March 12, 2015

Diet breadth is a classic optimal foraging theory (OFT) model from human behavioral ecology (HBE). Different resources, ranked according to their food value and processing costs, are distributed in th

Patch choice model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Saturday, November 22, 2008 | Last modified Saturday, April 27, 2013

NetLogo model of patch choice model from optimal foraging theory (human behavioral ecology).

Under development.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept