Gudrun Wallentin

Positions held today:
• Associate Professor for Geoinformatics and Ecology at the University of Salzburg (since 2017)
• UNIGIS Program Director (since 2020)
• Head of the Research Group “Spatial Simulation” (since 2013)

Major academic milestones:
• Assistant Professor, Department for Geoinformatics, University of Salzburg (2013-2017)
• Associate Faculty in the FWF Doctoral College “GIScience” (2013-2017)
• Director of Studies UNIGIS MSc distance learning programs, University of Salzburg (2012-2020)
• PhD at the University of Innsbruck on ecological modelling (2011)
• Research Assistant Austrian Academy of Sciences, GIScience Institute (2007-2011)
• Magistra in Ecology, Univ. of Innsbruck (2001) and MSc in GIS, Univ. of Edinburgh (2006)

Research Interests

Spatially-explicit simulation modelling of complex, ecological systems: * the added value of spatially-explicit modelling * Hybrid agent-based and system-dynamics modelling in ecology * Agent-based models, Cellular Automata

The model generates disaggregated traffic flows of pedestrians, simulating their daily mobility behaviour represented as probabilistic rules. Various parameters of physical infrastructure and travel behaviour can be altered and tested. This allows predicting potential shifts in traffic dynamics in a simulated setting. Moreover, assumptions in decision-making processes are general for mid-sized cities and can be applied to similar areas.

Together with the model files, there is the ODD protocol with the detailed description of model’s structure. Check the associated publication for results and evaluation of the model.

Installation
Download GAMA-platform (GAMA1.8.2 with JDK version) from https://gama-platform.github.io/. The platform requires a minimum of 4 GB of RAM.

Bicycle model

Dana Kaziyeva Gudrun Wallentin Martin Loidl | Published Thursday, January 10, 2019 | Last modified Monday, February 22, 2021

The purpose of the model is to generate the spatio-temporal distribution of bicycle traffic flows at a regional scale level. Disaggregated results are computed for each network segment with the minute time step. The human decision-making is governed by probabilistic rules derived from the mobility survey.

COVID-19 ABM

Gudrun Wallentin | Published Tuesday, April 21, 2020 | Last modified Tuesday, April 21, 2020

Model of the Corona pandemic outbreak

The COVID-19 ABM aims to predict the qualitative behaviour of the CoViD-19 epidemic dynamics for the greater region of Salzburg City. Specifically, by means of scenario testing, it aims to help assessing how containment interventions can allow a stepwise relaxation of the lockdown without risking a new outbreak.

Bicycle encounter model

Gudrun Wallentin | Published Saturday, October 29, 2016 | Last modified Friday, March 29, 2019

This Bicycle encounter model builds on the Salzburg Bicycle model (Wallentin & Loidl, 2015). It simulates cyclist flows and encounters, which are locations of potential accidents between cyclists.

Salzburg Bicycle model

Gudrun Wallentin | Published Saturday, October 29, 2016

An ABM to simulate the spatio-temporal distribution of cyclists across the road network of the city of Salzburg.

Hybrid fish-plankton model

Gudrun Wallentin Christian Neuwirth | Published Friday, October 28, 2016 | Last modified Sunday, January 29, 2017

A hybrid predator-prey model of fish and plankton that switches dynamically between ABM and SD representations. It contains 6 related structural designs of the same model.

TREELIM

Gudrun Wallentin | Published Wednesday, November 30, 2016 | Last modified Tuesday, January 10, 2017

The model simulates the spatial patterns of secondary forest succession above the current alpine tree line in the context of land use and climate change. Three scenarios are offered: (1) climate change, (2) land use change, (3) species composition.

In this model, we simulate the navigation behavior of homing pigeons. Specifically we use genetic algorithms to optimize the navigation and flocking parameters of pigeon agents.

Homing pigeon model

Gudrun Wallentin | Published Saturday, October 29, 2016

This model represents the flight paths of a flock of homing pigeons according to their flocking-, orientation- and leadership behaviour.

Under development.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept