Computational Model Library

Displaying 10 of 110 results for "Michael E Wolf-Branigin" clear search

This is an agent-based model coded in NetLogo. The model simulates population dynamics of bighorn sheep population in the Hell’s Canyon region of Idaho and will be used to develop a better understanding of pneumonia dynamics in bighorn sheep populations. The overarching objective is to provide a decision-making context for effective management of pneumonia in wild populations of bighorn sheep.

Linear Threshold

Kaushik Sarkar | Published Saturday, November 03, 2012 | Last modified Saturday, April 27, 2013

NetLogo implementation of Linear Threshold model of influence propagation.

Confirmation Bias is usually seen as a flaw of the human mind. However, in some tasks, it may also increase performance. Here, agents are confronted with a number of binary Signals (A, or B). They have a base detection rate, e.g. 50%, and after they detected one signal, they get biased towards this type of signal. This means, that they observe that kind of signal a bit better, and the other signal a bit worse. This is moderated by a variable called “bias_effect”, e.g. 10%. So an agent who detects A first, gets biased towards A and then improves its chance to detect A-signals by 10%. Thus, this agent detects A-Signals with the probability of 50%+10% = 60% and detects B-Signals with the probability of 50%-10% = 40%.
Given such a framework, agents that have the ability to be biased have better results in most of the scenarios.

This model aims at creating agent populations that have “personalities”, as described by the Big Five Model of Personality. The expression of the Big Five in the agent population has the following properties, so that they resemble real life populations as closely as possible:
-The population mean of each trait is 0.5 on a scale from 0 to 1.
-The population-wide distribution of each trait approximates a normal distribution.
-The intercorrelations of the Big Five are close to those observed in the Literature.

The literature used to fit the model was a publication by Dimitri van der Linden, Jan te Nijenhuis, and Arnold B. Bakker:

This model illustrates the processes underlying the social construction of reality through an agent-based genetic algorithm. By simulating the interactions of agents within a structured environment, we have demonstrated how shared information and popularity contribute to the formation of emergent social structures with diverse cultures. The model illustrates how agents balance environmentally valid information with socially reliable information. It also highlights how social interaction leads to the formation of stable, yet diverse, social groups.

Swidden farming by individual households

C Michael Barton | Published Sunday, April 27, 2008 | Last modified Saturday, April 27, 2013

Swidden Farming is designed to explore the dynamics of agricultural land management strategies.

Patch choice model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Saturday, November 22, 2008 | Last modified Saturday, April 27, 2013

NetLogo model of patch choice model from optimal foraging theory (human behavioral ecology).

Diet breadth model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Wednesday, November 26, 2008 | Last modified Thursday, March 12, 2015

Diet breadth is a classic optimal foraging theory (OFT) model from human behavioral ecology (HBE). Different resources, ranked according to their food value and processing costs, are distributed in th

Hominin ecodynamics v.2

C Michael Barton | Published Monday, September 19, 2011 | Last modified Friday, March 28, 2014

Simulates biobehavioral interactions between 2 populations of hominins.

Peer reviewed Hominin ecodynamics v.1

C Michael Barton | Published Saturday, October 01, 2011 | Last modified Friday, March 28, 2014

Biobehavioral interactions between two populations under different movement strategies.

Displaying 10 of 110 results for "Michael E Wolf-Branigin" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept