Computational Model Library

Displaying 10 of 1068 results for "Elena A. Pearce" clear search

Package for simulating the behavior of experts in a scientific-forecasting competition, where the outcome of experiments itself depends on expert consensus. We pay special attention to the interplay between expert bias and trust in the reward algorithm. The package allows the user to reproduce results presented in arXiv:2305.04814, as well as testing of other different scenarios.

CITMOD A Tax-Benefit Modeling System for the average citizen

Philip Truscott | Published Monday, August 15, 2011 | Last modified Saturday, April 27, 2013

Must tax-benefit policy making be limited to the ‘experts’?

A consumer-demand simulation for Smart Metering tariffs (Innovation Diffusion)

Martin Rixin | Published Thursday, August 18, 2011 | Last modified Saturday, April 27, 2013

An Agent-based model simulates consumer demand for Smart Metering tariffs. It utilizes the Bass Diffusion Model and RogersĀ“s adopter categories. Integration of empirical census microdata enables a validated socio-economic background for each consumer.

Modeling Arabian Upraise, a System Dynamics Approach: Egypt case study

Morteza Nazari | Published Wednesday, October 05, 2011 | Last modified Saturday, April 27, 2013

A System Dynamics Model to anticipate insurgent movements and policy design to handle them .

A Model to Unravel the Complexity of Rural Food Security

Samantha Dobbie Stefano Balbi | Published Monday, August 22, 2016 | Last modified Sunday, December 02, 2018

An ABM to simulate the behaviour of households within a village and observe the emerging properties of the system in terms of food security. The model quantifies food availability, access, utilisation and stability.

Growing Unpopular Norms. A Network-Situated ABM of Norm Choice.

C Merdes | Published Tuesday, November 22, 2016 | Last modified Saturday, March 17, 2018

The model’s purpose is to provide a potential explanation for the emergence, sustenance and decline of unpopular norms based on pluralistic ignorance on a social network.

In this model, we simulate the navigation behavior of homing pigeons. Specifically we use genetic algorithms to optimize the navigation and flocking parameters of pigeon agents.

We develop an IBM that predicts how interactions between elephants, poachers, and law enforcement affect poaching levels within a virtual protected area. The model is theoretical at this stage and is not meant to provide a realistic depiction of poaching, but instead to demonstrate how IBMs can expand upon the existing modelling work done in this field, and to provide a framework for future research. The model could be further developed into a useful management support tool to predict the outcomes of various poaching mitigation strategies at real-world locations. The model was implemented in NetLogo version 6.1.0.

We first compared a scenario in which poachers have prescribed, non-adaptive decision-making and move randomly across the landscape, to one in which poachers adaptively respond to their memories of elephant locations and where other poachers have been caught by law enforcement. We then compare a situation in which ranger effort is distributed unevenly across the protected area to one in which rangers patrol by adaptively following elephant matriarchal herds.

CHAAHK: a Spatial Simulation of the Maya Elevated Core Region

Alex Kara | Published Tuesday, December 04, 2018 | Last modified Thursday, September 26, 2019

This thesis presents an abstract spatial simulation model of the Maya Central Lowlands coupled human and natural system from 1000 BCE to the present day. It’s name is the Climatically Heightened but Anothropogenically Achieved Historical Kerplunk model (CHAAHK). The simulation features features virtual human groups, population centers, transit routes, local resources, and imported resources. Despite its embryonic state, the model demonstrates how certain anthropogenic characteristics of a landscape can interact with externally induced trauma and result in a prolonged period of relative sociopolitical uncomplexity. Analysis of batch simulation output suggests decreasing empirical uncertainties about ancient wetland modification warrants more investment. This first submission of CHAAHK’s code represents the simulation’s implementation that was featured in the author’s master’s thesis.

The model is an agent-based artificial stock market where investors connect in a dynamic network. The network is dynamic in the sense that the investors, at specified intervals, decide whether to keep their current adviser (those investors they receive trading advise from). The investors also gain information from a private source and share public information about the risky asset. Investors have different tendencies to follow the different information sources, consider differing amounts of history, and have different thresholds for investing.

Displaying 10 of 1068 results for "Elena A. Pearce" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept