Private forest owner management behavior using social interactions, information flow, and peer-to-peer n (1.0.0)
Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner’s management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of ‘harvest readiness’ and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The model also serves as an important testing ground for new theories of landowner decision making and behavior.
Release Notes
This model was frozen on 3/4/2015 for manuscript preparation. It is called Version 1.
Associated Publications
Private forest owner management behavior using social interactions, information flow, and peer-to-peer n 1.0.0
Submitted byEmily SilverPublished Oct 13, 2015
Last modified Feb 23, 2018
Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner’s management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of ‘harvest readiness’ and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The model also serves as an important testing ground for new theories of landowner decision making and behavior.
Release Notes
This model was frozen on 3/4/2015 for manuscript preparation. It is called Version 1.
Cite this Model
Emily Silver Huff, Jessica Leahy, Aaron R Weiskittel, Caroline L Noblet, David Hiebeler (2015, October 13). “Private forest owner management behavior using social interactions, information flow, and peer-to-peer n” (Version 1.0.0). CoMSES Computational Model Library. Retrieved from: https://www.comses.net/codebases/4710/releases/1.0.0/
Create an Open Code Badge that links to this model more info
This model has not been reviewed by CoMSES Net and should be independently reviewed to
meet the Open Code Badge guidelines.
You can use the following HTML or Markdown code to create an Open Code Badge that links to
version 1.0.0
of this computational model.
This website uses cookies and Google Analytics to help us track user engagement and improve our site. If
you'd like to know more information about what data we collect and why, please see
our data privacy policy. If you continue to use this site, you consent to
our use of cookies.