In organizations or firms, and in multicellular systems, human or cellular organisms require complex signaling networks to coordinate their effort and improve their odds. Lewis’ signaling games are extensive form games originally derived to describe the evolution of the association between a sign and its meaning. Signaling chains generalize Lewis’ signaling games in order to model the evolution of signaling in complex systems. More precisely this model empirically evaluates how effective the probe and adjust learning dynamics is in evolving signaling conventions on signaling chains.
In signaling chains, there are four fundamental elements: a sender, a receiver, a transmitter, and a state of Nature, which provides random events that are independent of the players behavior. At each time t, Nature chooses its state with some probability, the sender observes Nature’s state, and sends a signal through a chain of transmitters to the receiver. The receiver does not know the state of Nature, and she must chose an action. Finally, the receiver’s action and Nature’s state determine the sender’s and receiver’s payoff. In this model, cases in which the sender and receiver share a perfect common interest are considered. If the act matches Nature’s state, the sender and the receiver get a payoff of one, otherwise they get a payoff of zero.
Release Notes
This model was described and used to study probe and adjust learning in the following peer-reviewed paper:
Giorgio Gosti (2018) Signalling chains with probe and adjust learning, Connection Science, 30:2, 186-210, DOI: 10.1080/09540091.2017.1345858
Associated Publications
Lewis' Signaling Chains 1.5.0
Submitted byGiorgio GostiPublished Apr 03, 2015
Last modified Feb 23, 2018
In organizations or firms, and in multicellular systems, human or cellular organisms require complex signaling networks to coordinate their effort and improve their odds. Lewis’ signaling games are extensive form games originally derived to describe the evolution of the association between a sign and its meaning. Signaling chains generalize Lewis’ signaling games in order to model the evolution of signaling in complex systems. More precisely this model empirically evaluates how effective the probe and adjust learning dynamics is in evolving signaling conventions on signaling chains.
In signaling chains, there are four fundamental elements: a sender, a receiver, a transmitter, and a state of Nature, which provides random events that are independent of the players behavior. At each time t, Nature chooses its state with some probability, the sender observes Nature’s state, and sends a signal through a chain of transmitters to the receiver. The receiver does not know the state of Nature, and she must chose an action. Finally, the receiver’s action and Nature’s state determine the sender’s and receiver’s payoff. In this model, cases in which the sender and receiver share a perfect common interest are considered. If the act matches Nature’s state, the sender and the receiver get a payoff of one, otherwise they get a payoff of zero.
Release Notes
This model was described and used to study probe and adjust learning in the following peer-reviewed paper:
Giorgio Gosti (2018) Signalling chains with probe and adjust learning, Connection Science, 30:2, 186-210, DOI: 10.1080/09540091.2017.1345858
This model is the generalization of the Lewis’ signaling game with Probe and Adjust dynamics as described in:
Skyrms, B. Learning to Signal with Probe and Adjust. Episteme 9, 02 (July 2012),
139–150.
Create an Open Code Badge that links to this model more info
This model has not been reviewed by CoMSES Net and should be independently reviewed to
meet the Open Code Badge guidelines.
You can use the following HTML or Markdown code to create an Open Code Badge that links to
version 1.5.0
of this computational model.
This website uses cookies and Google Analytics to help us track user engagement and improve our site. If
you'd like to know more information about what data we collect and why, please see
our data privacy policy. If you continue to use this site, you consent to
our use of cookies.