ODD for “An agent-based model of hierarchical information-
sharing organizations in asynchronous environments”

The model description follows the ODD (Overview, Design concepts, Details) protocol for
describing individual- and agent-based models (Grimm et al. 2006; 2010; Railsback and Grimm
2018).

1. Purpose and patterns

The basic research question was whether hierarchies were useful in changing environments,
and if so, when, how, and why?

We sought to create a model wherein a simple hierarchical organization attempts to adapt to a
changing environment, and where that organization consists of workers and managers that see
information at different scales: ground-level vs higher-level.

The model had both core requirements and constraints. Adaptation would require very simple
learning on the part of both the workers and the managers. The environment should be as
simple as possible while still being able to vary by worker location. Agents could have no ability
to punish one another; we needed to eliminate social power. Thus, the organizational structure
consisted only of communication between workers and managers.

The model achieved these basic components and patterns simply, although a simpler model
may be possible.

2. Entities, state variables, and scales

The model has local environments, agents, and basic communication.
Environment:

We create a grid-cell environment that is simple while still making it possible for agents to
experience different local environments in space and time. We first create a strip of cells where
each one worker stands on one cell. Each worker’s cell is their local state: that state is one of
two binary values, and can change its value on each time step of the model. Static
environments are of no interest, so the simplest environment in our set is a synchronous
environment where all local states are the same in space and change their values
simultaneously over time. These environments have little complexity, since every lane is a
duplicate of its neighbor lanes. To create more complex environments, we modify the
landscape by delaying or inverting the onset of environmental changes the agents experience
relative to one another. In Figure 1 we visualize the one-dimensional world agents experience
over time as two-dimensional landscapes, and show how simple algorithmic landscape
modifications result in local conditions becoming asynchronous with one another.

no delay
asynchrony

delay
asynchrony

no inverted 0.2 0.3 0.5
ansynchrony

inverted rows percent-as-decimal for inverted asynchrony
Figure 1. X-axis: inverted lanes, percent-as-decimal. Y-axis: delay asynchrony off or on. Each
pattern results from a synchronous starting pattern transformed through a combination of
these parameter settings. This selection of small submatrices from the simulated landscapes
shows the differences in asynchrony. The set of environmental landscapes we use in the model
are larger, and each is much longer than shown here. Within each pattern, each agent has its
own row and each time step is a column; each of these patterns would have 6 workers, one on
each of the 6 rows.

Ill

Each cell “problem” is a 0 or 1; each worker has its own lane of problems. When landscapes are
synchronous, problem transitions happen across lanes simultaneously. When landscapes are
asynchronous, that asynchrony is controlled by two parameters: 1) whether problems are
staggered (delayed in transition) among the lanes, so that the transition hits each worker at a
different time; 2) what percentage of lanes are made the inverse of other lanes. Staggering
transitions among workers is a milder form of asynchrony, whereas inverted rows represent
very different local sub-environments from the overall environment. By varying these
parameters we can create increasingly asynchronous environments with either delayed
environmental changes across agents, or some local conditions that are the inverse of the
overall environment, or both.

Agents:

In this model, each agent must solve one problem per round by correctly predicting the
incoming local environmental state. Agents—both workers and managers—have no ability to
foresee future problems, so they must rely on their memory of past problems and on input
from others. Agents have memories which store the last n problems they have seen (their
memories are 3 slots to 9 slots long). When deciding on a strategy for the next problem, they
consult their memory and any inputs (i.e., advice from the manager) and take the mode of that
set of values. Agent capabilities and preferences are homogeneous within runs, but become
varied in their memories and choices as they learn their heterogeneous environment. The
agents’ decision-making is focused only on getting the next tick right.

Agents have input weights that are a 0 to 1 ratio of how much weight their put on their
memory vs their manager’s input (assuming they’re in the manager condition). Since the choice
is the statistical mode, the inputs are multiplied in number (not in value) to give the mode a set

of inputs that are the correct ratio for that weight; in other words, the size of the set is scaled
to be larger so that the number of elements is the right proportion. Agents also have weight
adjustment increment settings, which at 0 mean that they cannot adjust the input weight value,
but above 0 means they can adjust the weight by that value each tick (e.g., 0.2 means that if the
agent decides to adjust the ratio, they will change it by 0.2 only, not more or less).

2.1. Variables and their parameters

Table 1 contains the key parameters for understanding the model. Simulations included every
combination of these parameters.

2.1.1. Key parameter inputs for the environment

Possible
Parameter Dynamic? Values Description
number-of- No {0, 1} no-hierarchy vs hierarchy
managers
delayed- No {0, 1} Whether to delay environmental changes by 1
asynchrony additional unit for each subsequent lane; this leads
to a stair-step pattern in the environment in time
and space.
inverted- No {0,0.1,0.2, Percent-as-decimal of total lanes where all values
asynchrony 0.3,0.4, are inverted.
0.5}

2.1.2. Key data objects for the environment

Possible
Object Dynamic? Values Description
problem- No {0, 1} Stores all problems in the grid as a matrix.
matrix
turtle-adj- No {0, 1} Stores which turtles can communicate with one
matrix another as an adjacency matrix.

2.1.3. Key parameter inputs for the agents

Possible
Parameter Dynamic? Values Description
agent-mem- No {3,4,5,6, Number of past problem values each agent can
length 7, 8,9} store.
weight- Yes {0, 0.25, Weight agent puts on advice from other agents

others-input 0.5, 0.75} versus their own memory. A weight of 0 is

equivalent to ignoring advice. If agents can adjust
the weight, this variable is the starting weight.

weight-adj- No {0,0.1,0.2, How much an agent can adjust their input weight in
increment 0.3,0.4, one tick. If the value is 0, the agent does not adjust
0.5} their input weights.
2.1.4. Key variables for the agents
Possible
Variable Dynamic? Values Description
my-weight- Yes/No [0, 1] The weight, as a percentage, that the agent puts on
others-input depending advice from the manager versus their own memory.
on weight- For example, a weight of .25 means the advice is
adj- weighed .25 and their memory is weighed .75 when
increment making a decision. A weight of 0 is equivalent to
ignoring advice. Runs in which agents have weigh-
adj-increment set to above 0 implies the agent can
(and probably will) be changing this value over the
run.
my-mem Yes [0, 1] The last n problems the agent remembers, where n
is the memory length.
my-input- Yes [0, 1] The agent remembers what the manager told them
from-others so that they can judge whether the input was
correct or not.
info-to- Yes [0, 1] The agent tells the manager what the answer to the
transfer last problem was.

3. Process overview and scheduling

3.1. Overview of the model routine

Set up environment Set up workers
with local problems (and managers)

Start simulation

YES Workers communicate Local manager sends Manager stores mode
local environmental — mode of problemsto —— of last step's problems
problems to manager workers as input in memory

End simulation

Workers adjust weight
on manager input,
if applicable.

Figure 2. A flowchart of the model routine. The third row of boxes, and the box in the lower
left, contain manager-specific processes that only happen in groups with managers. Note that
managers never provide input on the current timestep to the workers, but only the previous
timestep. Each worker is awarded points for successful decisions individually each timestep, but
the individual scores are summed together when the simulation is complete; managers cannot
earn points.

3.1. Setup/Initialization
Set-up environment

1. Set-up the problem matrix/grid according to the environmental input parameters.
Set-up agents

1. Create a worker class, and, if the run has a manager, a manager class.

2. Create the number of workers and managers specified in the input parameters. In the
model used in the paper, the number of workers was always ten, with only one manager
for hierarchical groups, and no manager for groups without hierarchy.

3.2. Run loop
1. If and only if the run has a manager

a. Each worker communicates their last problem to the manager.
b. The manager communicates the statistical mode of the last problem to the
workers as input.

2. Each worker uses its memory and manager input (if enabled for the run), weighed
according to its current variable value, to calculate the statistical mode. This is its
prediction for the current problem.

3. The manager (if enabled for the run) uses its memory and worker input, weighed
according to their current variable value, to calculate the statistical mode. This is its
prediction of the current problem (which it will communicate to the workers the next
time step).

4. Each worker and the manager store their prediction in their memory.

5. The true value of the current problem is revealed to each worker, who stores it in
memory. The true statistical mode of the current problem is revealed to the manager (if
the run has a manager).

6. Each worker and the manager (if enabled) scores whether their prediction for this time
step was correct.

7. Each worker updates their score with whether they were correct. The manager does not
contribute to the score.

8. If future problems remain on the grid, agents move forward to the next time step and
set of problems; loop to Run step 1.

3.3. Group scoring
1. When the run has finished (there are no future problems remaining), do not count
scores of early time steps, since the agents’ memories will not be filled. The first n
problems, where n = 10 + the agents’ memory length, should not be counted in the
score.
2. Sum the scores for all workers in the group to calculate the group score.

3.4. Conceptual diagram of the model process

. ‘% Timestep 4

E 65 5 4 . B OB OLJ L

+1 point in score l

Timestep 5

£ %, £ W % E £ J.d &

+0 point in score l

. Timestep 6
LS T ¢ [..] t

mode
—

mode MEMERE B, 72 Current timestep: 4

of manager weight = .25
modes oo -
—

manager

Figure 3. The core elements of agent decision-making about the environment in the model. Box
A: A worker uses its memory of past timesteps to predict the future timestep, scoring a point
when it is correct and scoring no points when it is not. Box B: A worker weighs manager input
and its memory when guessing the next timestep. NOTE: The agents cannot see the cells in
future timesteps; these have been revealed for reader convenience in box B.

4. Design concepts

This model is designed with the overarching concept of workers occupying a series of different
locations, and these locations then change each timestep (tick in NetLogo). One can think of
this as a board that agents advance on one timestep at a time. Alternatively, one can think of
this like a treadmill with squares on the belt. We line workers up the width of a treadmill and
have them float above the belt, each looking down at their cell, which is their local
environment. When the treadmill advances one square, that is one unit of time passing (a
timestep), and the workers see the next timestep’s local environment. Thus, space and time can
be represented by this 2D strip of squares, see Figure 1.

In the implementation, we place all worker agents on their own locale or cell (or patch in
Netlogo). Managers, when active, do not have their own cell and do not interact with any
spatial location, only with workers.

The primary design focus for the individual was an agent that could perform basic learning of
the environment by predicting what the future state would be based on the past states. We
chose to do this using the statistical mode of past states performed on the memory length of
the agent (3 to 9 units in length). We also enable the agent to learn from additional information
inputs, which in this study is manager input about the state of the environment.

The primary design focus for the social group / organization was the presence of a manager
who could provide feedback about the overall state of the environment, which could be lossy—
and was lossy any time the locales weren’t all one value—because the environment can vary at
each locale. We can then contrast how well workers do in different environments when they
receive manager input on the overall state of the environment (hierarchy) versus not (no
hierarchy).

4.1 Local Knowledge

Workers have local knowledge of their locale (local environment) stored in memory, and also
can see the state of the locale at the end of each timestep, which they store in memory bank.
Their memory bank operates on a first-in-first-out basis, where the oldest memory is dropped
when the new memory is added.

The managers operate the same way, but their inputs are not the local environments but what
the workers tell them the local environments are, which the managers then process (taking the
statistical mode) to store as a single memory.

4.2. Organizational memory

The workers in the no hierarchy condition have memories of the past environmental states, but
since they do not communicate it is not an organizational memory. However, workers in

hierarchy conditions with managers do have something approaching an organizational memory,
consisting of their own memories and the manager’s memory of the overall states of the
environment. The parameter that allows agents to adjust the weight they put on the manager’s
input versus their own memories is a further element of organizational memory, as it effects
the strength, in some sense, of elements of the memory.

4.3 Communication

Workers do not communicate with one another, but they do communicate with the manager (if
present), and the manager communicates to them. These communications are inputs into their
decision-making. These communications are only local environmental state, in the case of the
worker, or the statistical mode of the past environmental state, if the manager. No other
information is communicated.

When the group has a manager, at the start of each timestep, each worker communicates their
last problem to the manager. The manager communicates the statistical mode of the last
problem to the workers as input.

4.4 Autonomy

Workers that can adjust the input weight given to manager input are said to have some degree
of autonomy. Workers who cannot are said to have no autonomy. Thus, whether the parameter
for adjusting input weights is on determines whether the workers have autonomy in the model.
If workers give only 50% weight to the manager, but cannot adjust that weight, they are said in
our model to have no autonomy.

4.5 Changing environments

The environment can be thought of as local environments that change over time, one for each
worker, and thus one lane for each worker. The overall environment is a tape or track of all
these lanes together. Each timestep, local environments can change states between one of two
binary values. These are determined ahead of running the agent part of the simulation by
modifying a synchronous landscape. A synchronous landscape has all values change at the same
time across all locales. This can be thought of as a perpendicular strip of one color on a longer
tape or track of timesteps. Each landscape has multiple environmental changes over time.

Modifying this landscape is done through applying transformations as the parameter settings
specify. First, if the parameter for inverted asynchrony is set to a value (e.g., .5), that value is
interpreted as percent-as-decimal, and so that many worker lanes are changed so that each
local value is switched to the opposite value in each of those lanes. Following that, if the
parameter for delay asynchrony is set (only on or off), each lane is sequentially moved one
timestep forward from the one before it, starting with the 2" lane. This results in a stair-step
pattern when the entire landscape is viewed (see Figure 1), but is seen by the group as
environmental change where some local environments change before others.

4.6 Stochasticity

The model has a small amount of stochasticity. When deciding on a strategy for the next
problem, they consult their memory and any inputs (i.e., advice from the manager) and take
the statistical mode of that set of values; when two modes exist, agents pick one at random,
which adds a small degree of stochasticity to the model.

4.7 Sensing

Agents sense their local environment perfectly. No part of the system has noise or error in
sensing. This also includes the manager’s received and given input to the workers.

4.8 Learning

Agent learning happens through storing past environmental values in memory. For the workers,
these are the local values they have seen, and for the manager, these are the statistical modes
of the local values they have been told by workers.

4.9 Prediction

Agents predict the future environment through processing their memories and (if the
parameter is set) receiving manager input. If the parameter is set, workers weigh manager
input by the set value (e.g., .5), and if the adjustment weight parameter is set, they can also
adjust the weight they put on manager input the next time.

The adjustment is only performed when the manager’s input was a better predictor than the
worker’s memory (manager is then weighted more then next timestep) or when the worker’s
memory was a better predictor than the manager’s input (the manager’s input is then weighted
less the next timestep). Otherwise, they do not adjust weights from their current settings.

In other words, how much workers weigh their manager’s advice is manipulated either as a
static value across a run—non-adjustable by agents—or as a value which agents can adjust.
When adjustable, workers assess their problem response each round and can adjust the
weights incrementally. Workers decide to adjust weights only when their memory and the
manager input disagree. If their memory was the better choice, they up-weigh memory. If
listening to the manager was the better choice, they up-weigh manager input. If both were
right or both were wrong, they leave the weights unchanged.

Workers that adjust weights use the following algorithm. Let us define a number counting
function C(x) such that each of its components i € {0, 1} counts the respective number in a
0-indexed vector of binary values

cwi=) 1

JEN |x]'=i
For example,

er 0 0 1 1)=[2 3]

The counting function is applied to the worker memory vector and the manager input vector,
and a weighted sum of the two is used to select the predicted environmental state x* by
picking the component with the highest value

x* = argmaxiep13 WC(xy) + (1 —w)C(xy)

Where x™ is the predicted environmental state, w is a scalar weight, and x,, and x,,, are worker
and manager input, respectively. In other words, the weighing algorithm takes two (binary)
vectors, one being the worker’s memory and one being manager input, each which is a series of
Os and 1s. These are then encoded as counts in a 2-tuple. For example, the memory vector
[0,0,1,1,0,0] would be encoded as [4,2], and the manager input vector [1] would be encoded as
[0,1]. These encodings enable a weight adjustment to each based on the agent’s weight
parameter, after which the highest value is taken, and then the 0 or 1 (based on the index of
the encoding) is selected. For example, say the worker’s memory is weighed .2, in which case
manager input is weighted .8. Using the previous examples, the calculation is . 2 * [4,2] + .8 *
[0,1] = [. 8,1.2]; we select the higher value from [. 8,1.2], which is 1.2, which is the second
position in the 2-tuple, and which is associated with binary value 1. The worker then predicts
the environmental state as 1, which can be thought of as “on” or blue in Figure 1.

4.10 Interaction

Workers in the no hierarchy condition do not interact with one another. Workers in the
hierarchy condition interact directly with the manger, and the manager interacts directly with
them; in this sense the workers interact with each other indirectly in the hierarchy condition.

This is further detailed in “4.3 Communication.”

Workers and managers do not interact with the environment in the sense of changing it.
However, the workers do score their success in dealing with the environment based on whether
they predicted the correct state.

4.11 Output datasets

Output datasets include one or more (depending on settings) group score results for a specific
parameter configuration. These are used to make dyad comparisons where all parameter
settings are the same except one has a manager (hierarchical) and one does not (not
hierarchical). We used the behavior space extension in NetLogo to run each parameter set 20
times due to the slight stochasticity of the model.

5. Initialization

Upon initialization, the model sets up the problem matrix/grid according to the environmental
input parameters shown in “2.1.1. Key parameter inputs for the environment.” Initialization
includes the construction of the landscape (see Figure 1) from the environmental parameters,
starting with a simple simultaneous-transitions environment with 9 transitions (top-left
example in Figure 1). If the parameters of the particular run specify environmental asynchrony,
the landscape is modified accordingly while retaining the same 9 transitions in each lane.

Examples of these modified landscapes are shown in Figure 1. Environments are always 255
problems long and 10 problems wide (one lane for each of the 10 workers; Figure 1 shows
fewer lanes and shorter landscapes for ease of visualization).

0.5} set by
Behaviorspace during
parameter sweep

Name on Netlogo Parameter Value for Varied between

GUI control element initialization runs?

number-of-workers number-of-workers 10 No

problems-per-worker | problems-per-worker | 255 No

transitions transitions 9 No

stagger delayed-asynchrony | {0,1} set by Yes, see “2.1.1. Key
Behaviorspace during | parameter inputs for
parameter sweep the environment”,

reproduced below.
oppositizer inverted-asynchrony | {0, 0.1, 0.2,0.3, 0.4, Yes, see “2.1.1. Key

parameter inputs for
the environment”,
reproduced below.

number-of-managers

number-of-managers

{0,1} set by
Behaviorspace during
parameter sweep

Yes, see “2.1.1. Key
parameter inputs for
the environment”,
reproduced below.

5.1.1. Key parameter inputs for the environment

Possible
Parameter Dynamic? Values Description
number-of- No {0, 1} no-hierarchy vs hierarchy
managers
delayed- No {0, 1} Whether to delay environmental changes by 1
asynchrony additional unit for each subsequent lane; this leads

to a stair-step pattern in the environment in time
and space.

inverted- No {0,0.1,0.2, Percent-as-decimal of total lanes where all values
asynchrony 0.3,0.4, are inverted.
0.5}

See Figure 2 for a flowchart showing the initialization in the context of the model’s routines.

Note: Workers fill their memories up with first steps on the landscape before they encounter
transitions and before they are scored so that empty or partial memories do not interfere with
their decision making, or affect score differences between runs.

6. Input data

The model does not use input from external sources.

7. References

The template cites the following publications:

Grimm, V. and S. F. Railsback. 2005. Individual-based modeling and ecology. Princeton
University Press, Princeton, New Jersey.

Grimm, V., U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S.
Heinz, G. Huse, A. Huth, J. U. Jepsen, C. Jgrgensen, W. M. Mooij, B. Milller, G. Pe’er, C. Piou, S.
F. Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Riiger, E. Strand, S. Souissi, R. A.
Stillman, R. Vabg, U. Visser, and D. L. DeAngelis. 2006. A standard protocol for describing
individual-based and agent-based models. Ecological Modelling 198:115-296.

Grimm, V., U. Berger, D. L. DeAngelis, G. Polhill, J. Giske, and S. F. Railsback. 2010. The ODD
protocol: a review and first update. Ecological Modelling 221:2760-2768.
do0i:10.1016/j.ecolmodel.2010.08.019.

Railsback, S. F. 2001. Concepts from complex adaptive systems as a framework for individual-
based modelling. Ecological Modelling 139:47-62.

Railsback, S. F. and V. Grimm. 2018. Agent-based and individual-based modeling: a practical
introduction, 2nd edition. Princeton University Press, Princeton, New Jersey.

Zurell, D., U. Berger, J. S. Cabral, F. Jeltsch, C. N. Meynard, T. Mlinkemdiller, N. Nehrbass, J.
Pagel, B. Reineking, B. Schroder, and V. Grimm. 2010. The virtual ecologist approach: simulating
data and observers. Oikos 221:98-105. doi:10.1111/j.1600-0706.2009.18284.x

